Reconstruction of the WKB series as a new method of approximate solution of the Schrodinger equation

被引:0
作者
Kudryashov, VV [1 ]
机构
[1] BI Stepanov Phys Inst, Minsk 220602, BELARUS
来源
DOKLADY AKADEMII NAUK BELARUSI | 1998年 / 42卷 / 06期
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The WKB series is reconstructed in the form of the sum of the new asymptotic expansions which compose an approximating sequence. The explicit form is found for the functions represented by the leading expansions. As a result, a new analytical uniformly valid approximation is obtained for solutions of the one-dimensional Schrodinger equation with an arbitrary potential.
引用
收藏
页码:45 / 49
页数:5
相关论文
共 7 条
  • [1] Abramovits M., 1979, SPRAVOCHNIK SPETSIAL
  • [2] Bender C.M., 1978, Advanced mathematical methods for scientists and engineers
  • [3] NUMEROLOGICAL ANALYSIS OF WKB APPROXIMATION IN LARGE ORDER
    BENDER, CM
    OLAUSSEN, K
    WANG, PS
    [J]. PHYSICAL REVIEW D, 1977, 16 (06): : 1740 - 1748
  • [4] KUDRYASHOV VV, 1997, QUANTUM SYSTEM NEW T, P202
  • [5] On the connection formulas and the solutions of the wave equation
    Langer, RE
    [J]. PHYSICAL REVIEW, 1937, 51 (08): : 0669 - 0676
  • [6] OLVER F, 1990, ASIMPTOTIKA SPETSIAL
  • [7] Slavyanov S.Yu, 1990, ASIMPTOTIKA RESHENII