Signal reconstruction for the diffusion transport equation using tensorial spline Galerkin approximation

被引:5
作者
Addam, M. [1 ]
Bouhamidi, A. [1 ]
Jbilou, K. [1 ]
机构
[1] Univ Lille Nord France, ULCO, LMPA, F-62228 Calais, France
关键词
Parabolic diffusion equation; Robin boundary conditions; Fourier transform; Galerkin method; Tensorial spline functions; Gauss-Hermite quadrature; Interpolation; Error estimate; Numerical analysis; SCATTERING;
D O I
10.1016/j.apnum.2011.04.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the deterministic transport problem with Robin boundary conditions in optically diffusion medium. Existence and uniqueness for the such elliptic equation are given. An approximation of the photon density in frequency-domain is proposed by using a Galerkin method based on the tensorial B-splines. We propose the Gauss-Hermite quadrature formulation for the computation of the inverse Fourier transform of the temporal signal. This technique allows us to avoid the use of a method such as finite difference method. Error estimates are studied and some numerical examples are given. (c) 2011 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1089 / 1108
页数:20
相关论文
共 21 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F, P890
[2]   A numerical method for one-dimensional diffusion problem using Fourier transform and the B-spline Galerkin method [J].
Addam, M. ;
Bouhamidi, A. ;
Jbilou, K. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (12) :4067-4079
[3]  
[Anonymous], 1978, A Practical Guide to Splines
[4]  
[Anonymous], 1978, WAVE PROPAGATION SCA, DOI DOI 10.1016/B978-0-12-374701-3.X5001-7
[5]   Minimal energy surfaces on Powell-Sabin type triangulations [J].
Barrera, D. ;
Fortes, M. A. ;
Gonzalez, P. ;
Pasadas, M. .
APPLIED NUMERICAL MATHEMATICS, 2008, 58 (05) :635-645
[6]   Multivariate interpolating (m,l,s)-splines [J].
Bouhamidi, A ;
Le Méhauté, A .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 11 (04) :287-314
[7]   Towards computability of elliptic boundary value problems in variational formulation [J].
Brattka, Vasco ;
Yoshikawa, Atsushi .
JOURNAL OF COMPLEXITY, 2006, 22 (06) :858-880
[8]  
Brezis H., 1999, COLLECTION MATH APPL
[9]   Frechet derivatives for some bilinear inverse problems [J].
Dierkes, T ;
Dorn, O ;
Natterer, F ;
Palamodov, V ;
Sielschott, H .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (06) :2092-2113
[10]  
Ishimaru A., 1978, WAVE PROPAGATION SCA, V2