Spin caloritronics

被引:0
|
作者
Bauer, Gerrit E. W. [1 ,2 ]
Saitoh, Eiji [1 ,3 ]
van Wees, Bart J. [4 ]
机构
[1] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[2] Delft Univ Technol, Kavli Inst NanoSci, NL-2628 CJ Delft, Netherlands
[3] Japan Sci & Technol Agcy, CREST, Tokyo 1020075, Japan
[4] Univ Groningen, Zernike Inst Adv Mat, NL-9700 AB Groningen, Netherlands
关键词
MAGNETIZATION DYNAMICS; DOMAIN-WALL; TRANSPORT; FIELD; TEMPERATURE; THERMOPOWER; FERROMAGNET; CONDUCTION; TORQUES; SILICON;
D O I
10.1038/NMAT3301
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Spintronics is about the coupled electron spin and charge transport in condensed-matter structures and devices. The recently invigorated field of spin caloritronics focuses on the interaction of spins with heat currents, motivated by newly discovered physical effects and strategies to improve existing thermoelectric devices. Here we give an overview of our understanding and the experimental state-of-the-art concerning the coupling of spin, charge and heat currents in magnetic thin films and nanostructures. Known phenomena are classified either as independent electron (such as spin-dependent Seebeck) effects in metals that can be understood by a model of two parallel spin-transport channels with different thermoelectric properties, or as collective (such as spin Seebeck) effects, caused by spin waves, that also exist in insulating ferromagnets. The search to find applications - for example heat sensors and waste heat recyclers - is on.
引用
收藏
页码:391 / 399
页数:9
相关论文
共 50 条
  • [21] SPIN CALORITRONICS Electron spins blow hot and cold
    Goennenwein, Sebastian T. B.
    Bauer, Gerrit E. W.
    NATURE NANOTECHNOLOGY, 2012, 7 (03) : 145 - +
  • [22] Hydrogenated carbon nanotube-based spin caloritronics
    Zeng, Hong-Li
    Guo, Yan-Dong
    Yan, Xiao-Hong
    Zhou, Jie
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (32) : 21507 - 21513
  • [23] New horizons for microwave applications using spin caloritronics
    Gui, Y. S.
    Mehrabani, A.
    Flores-Tapia, Daniel
    Fu, L.
    Bai, L. H.
    Pistorius, S.
    Shafai, Lot
    Hu, C. -M.
    SOLID STATE COMMUNICATIONS, 2014, 198 : 45 - 51
  • [24] Lock-in thermoreflectance as a tool for investigating spin caloritronics
    Yamazaki, Takumi
    Iguchi, Ryo
    Nagano, Hosei
    Uchida, Ken-ichi
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (35)
  • [25] Stratonovich-Ito integration scheme in ultrafast spin caloritronics
    Chotorlishvili, L.
    Toklikishvili, Z.
    Wang, X-G
    Dugaev, V. K.
    Barnas, J.
    Berakdar, J.
    PHYSICAL REVIEW B, 2020, 102 (02)
  • [26] Computational study of spin caloritronics in a pristine and defective antimonene nanoribbon
    Hashemi, Samaneh
    Faez, Rahim
    Darvish, Ghafar
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 120
  • [27] Verification of the Thomson-Onsager reciprocity relation for spin caloritronics
    Dejene, F. K.
    Flipse, J.
    van Wees, B. J.
    PHYSICAL REVIEW B, 2014, 90 (18):
  • [28] Spin-valley caloritronics in silicene near room temperature
    Zhai, Xuechao
    Gao, Wenwen
    Cai, Xinlong
    Fan, Ding
    Yang, Zhihong
    Meng, Lan
    PHYSICAL REVIEW B, 2016, 94 (24)
  • [29] Spin caloritronics in magnetic tunnel junctions: Ab initio studies
    Czerner, Michael
    Bachmann, Michael
    Heiliger, Christian
    PHYSICAL REVIEW B, 2011, 83 (13):
  • [30] Spin and Charge Caloritronics in Bilayer Graphene Flakes with Magnetic Contacts
    Chico, Leonor
    Orellana, P. A.
    Rosales, L.
    Pacheco, M.
    PHYSICAL REVIEW APPLIED, 2017, 8 (05):