Application of a hybrid quantized Elman neural network in short-term load forecasting

被引:83
作者
Li, Penghua [1 ]
Li, Yinguo [1 ]
Xiong, Qingyu [2 ]
Chai, Yi [3 ]
Zhang, Yi [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
[2] Chongqing Univ, Sch Software Engn, Chongqing 400044, Peoples R China
[3] Chongqing Univ, Coll Automat, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R China
关键词
Short-term load forecasting; Quantized Elman neural network; Quantized learning algorithm; TIME-SERIES PREDICTION; GENETIC-ALGORITHM;
D O I
10.1016/j.ijepes.2013.10.020
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper investigates the short-term load forecasting (STLF) problem via a hybrid quantized Elman neural network (HQENN) with the least number of quantized inputs, hourly historical load, hourly predicted target temperature and time index. The purpose is to show the capabilities of HQENN to learn the complex dynamics of hourly power load time series and forecast the near future loads with high accuracies. The HQENN model is comprised of the qubit neurons and the classic neurons. The laws of quantum physics are employed to describe the interactions of the qubit neurons and the classic neurons. The extended quantum learning algorithm makes the context-layer weights being extended into the hidden-layer weights matrix such that they can be updated along with hidden-layer weights to extract more information about the load series. To improve the forecasting accuracy, the genetic algorithm (GA) is introduced to obtain the optimal or suboptimal structure of the HQENN model. The results indicate that the forecasting method based on HQENN has an acceptable high accuracy. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:749 / 759
页数:11
相关论文
共 36 条
[1]  
[Anonymous], 1997, IEEE Trans. Neural Netw
[2]  
[Anonymous], 1995, R329 U EX
[3]   Chaotic time series prediction with residual analysis method using hybrid Elman-NARX neural networks [J].
Ardalani-Farsa, Muhammad ;
Zolfaghari, Saeed .
NEUROCOMPUTING, 2010, 73 (13-15) :2540-2553
[4]   Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption [J].
Azadeh, A. ;
Ghaderi, S. F. ;
Tarverdian, S. ;
Saberi, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (02) :1731-1741
[5]   Applying Wavelets to Short-Term Load Forecasting Using PSO-Based Neural Networks [J].
Bashir, Z. A. ;
El-Hawary, M. E. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2009, 24 (01) :20-27
[6]   Hybrid Wavelet-PSO-ANFIS Approach for Short-Term Electricity Prices Forecasting [J].
Catalao, J. P. S. ;
Pousinho, H. M. I. ;
Mendes, V. M. F. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2011, 26 (01) :137-144
[7]   Nonparametric regression based short-term load forecasting [J].
Charytoniuk, W ;
Chen, MS ;
Van Olinda, P .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1998, 13 (03) :725-730
[8]   Short-Term Load Forecasting: Similar Day-Based Wavelet Neural Networks [J].
Chen, Ying ;
Luh, Peter B. ;
Guan, Che ;
Zhao, Yige ;
Michel, Laurent D. ;
Coolbeth, Matthew A. ;
Friedland, Peter B. ;
Rourke, Stephen J. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2010, 25 (01) :322-330
[9]   Application of echo state networks in short-term electric load forecasting [J].
Deihimi, Ali ;
Showkati, Hemen .
ENERGY, 2012, 39 (01) :327-340
[10]   FINDING STRUCTURE IN TIME [J].
ELMAN, JL .
COGNITIVE SCIENCE, 1990, 14 (02) :179-211