Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana

被引:102
|
作者
Kasinathan, V [1 ]
Wingler, A [1 ]
机构
[1] UCL, Dept Biol, London WC1E 6BT, England
关键词
D O I
10.1111/j.0031-9317.2004.00309.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Polyamines have been suggested to play an important role in stress protection. However, attempts to determine the function of polyamines have been complicated by the fact that, dependent on the conditions, polyamine contents increase or decrease during stress. To determine the importance of polyamine formation during salt stress, we analysed polyamine contents and salt tolerance in two Arabidopsis thaliana mutants, spe1-1 and spe2-1 (Watson et al. Plant J 13: 231-239, 1998), with reduced activity of arginine decarboxylase (EC 4.1.1.19), an important enzyme in polyamine synthesis. Polyamines accumulated in wild-type plants (Col-0 and Ler-0) that were pre-treated with 100 mM NaCl before transfer to 125 mM NaCl, but not in plants that were directly transferred to 125 mM NaCl without prior treatment with 100 mM NaCl. This shows that polyamine accumulation depends on acclimation to salinity. The salt treatment that induced polyamine accumulation in wild-type plants did not lead to polyamine accumulation in the spe1-1 and spe2-1 mutants. Decreased fresh weight, chlorophyll content and photosynthetic efficiency indicated that the spe1-1 mutant was more severely affected by salt stress than its wild type, Col-0. In the spe2-1 mutant decreased salt tolerance compared to its wild type, Ler-0, became apparent as bleaching tinder severe salt stress. The present results demonstrate that decreased polyamine formation due to lower arginine decarboxylase activity leads to reduced salt tolerance.
引用
收藏
页码:101 / 107
页数:7
相关论文
共 50 条
  • [21] Overexpression of the Arginine Decarboxylase Gene Improves Tolerance to Salt Stress in Lotus tenuis Plants
    Espasandin, Fabiana D.
    Calzadilla, Pablo I.
    Maiale, Santiago J.
    Ruiz, Oscar A.
    Sansberro, Pedro A.
    JOURNAL OF PLANT GROWTH REGULATION, 2018, 37 (01) : 156 - 165
  • [22] Overexpression of the Arginine Decarboxylase Gene Improves Tolerance to Salt Stress in Lotus tenuis Plants
    Fabiana D. Espasandin
    Pablo I. Calzadilla
    Santiago J. Maiale
    Oscar A. Ruiz
    Pedro A. Sansberro
    Journal of Plant Growth Regulation, 2018, 37 : 156 - 165
  • [23] Encapsulated Abscisic Acid as a Powerful Tool to Improve Arabidopsis thaliana Salt Stress Tolerance
    Gomez-Cadenas, A.
    Sampedro-Guerrero, J.
    Dalmau-Balaguer, A.
    Avendano, V. A.
    Clausell-Terol, C.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2024, 60 (01) : S132 - S133
  • [24] Polyamine oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance
    Zarza, Xavier
    Atanasov, Kostadin E.
    Marco, Francisco
    Arbona, Vicent
    Carrasco, Pedro
    Kopka, Joachim
    Fotopoulos, Vasileios
    Munnik, Teun
    Gomez-Cadenas, Aurelio
    Tiburcio, Antonio F.
    Alcazar, Ruben
    PLANT CELL AND ENVIRONMENT, 2017, 40 (04): : 527 - 542
  • [25] The role of cyanoalanine synthase and alternative oxidase in promoting salt stress tolerance in Arabidopsis thaliana
    Xu, Fei
    Peng, Ye
    He, Zheng-Quan
    Yu, Lu-Lu
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [26] The role of cyanoalanine synthase and alternative oxidase in promoting salt stress tolerance in Arabidopsis thaliana
    Fei Xu
    Ye Peng
    Zheng-Quan He
    Lu-Lu Yu
    BMC Plant Biology, 23
  • [27] Hormonal dynamics during salt stress responses of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea
    Prerostova, Sylva
    Dobrev, Petre I.
    Gaudinova, Alena
    Hosek, Petr
    Soudek, Petr
    Knirsch, Vojtech
    Vankova, Radomira
    PLANT SCIENCE, 2017, 264 : 188 - 198
  • [28] Increase in Salt Tolerance of Arabidopsis thaliana by TaDi19
    Yonggang Fan
    Sule Zhang
    Yaoyao Meng
    Zhanjing Huang
    Journal of Plant Growth Regulation, 2016, 35 : 163 - 171
  • [29] POLYMORPHISM AT GENES INVOLVED IN SALT TOLERANCE IN ARABIDOPSIS THALIANA (BRASSICACEAE)
    Puerma, Eva
    Aguade, Montserrat
    AMERICAN JOURNAL OF BOTANY, 2013, 100 (02) : 384 - 390
  • [30] Comparative Proteomics of Salt Tolerance in Arabidopsis thaliana and Thellungiella halophila
    Pang, Qiuying
    Chen, Sixue
    Dai, Shaojun
    Chen, Yazhou
    Wang, Yang
    Yan, Xiufeng
    JOURNAL OF PROTEOME RESEARCH, 2010, 9 (05) : 2584 - 2599