Naphthalene-Based Microporous Polyimides: Adsorption Behavior of CO2 and Toxic Organic Vapors and Their Separation from Other Gases

被引:60
作者
Li, Guiyang [1 ]
Wang, Zhonggang [1 ]
机构
[1] Dalian Univ Technol, Sch Chem Engn, Dept Polymer Sci & Mat, State Key Lab Fine Chem, Dalian 116024, Peoples R China
基金
美国国家科学基金会;
关键词
CARBON-DIOXIDE; POLYMER NETWORKS; HYDROGEN; FRAMEWORKS; METHANE; SELECTIVITY; ADSORBENTS; CAPTURE; DESIGN; SIZE;
D O I
10.1021/jp408502t
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Naphthalene was selected as a building block to prepare three polyimide networks with different topological structures via one-pot polycondensation from naphthalene-1,4,5,8-tetracarboxylic dianhydride with tetrakis(4-aminophenyl)methane, tris(4aminophenyl)amine, and 1,3,5-tris(4-aminophenyl)benzene. The resultant polymers have moderately large BET surface areas with narrow pore size distribution at around 6 A. Interestingly, it is found that they can uptake 90.5 wt % benzene vapor (298 K, 0.8 bar), and the separation factors of benzene over nitrogen, water, and cyclohexane are as high as 759.3, 40.3, and 13.8, respectively. The high adsorption capacity and selectivity of benzene vapor are attributed to the incorporation of large amount of naphthalene groups in the network since naphthalene is highly hydrophobic in nature and has strong pi-electron-delocalization effect. On the other hand, the CO2 uptakes in polymers reach 12.3 wt % (273 K, 1 bar), and the adsorption curves are reversible. Moreover, the separation factors of CO2/N-2 and CO2/CH4 are 88.6 and 12.9, respectively, superior to many other microporous organic polymers. The above experimental results were analyzed and explained with respect to the kinetic diameters, polarity, critical temperature of the vapors and gases, and the stereoconfiguration of net nodes, porous characteristics, and hydrophobic/hydrophilic nature of the pore walls of the microporous polyimides.
引用
收藏
页码:24428 / 24437
页数:10
相关论文
共 64 条
[1]   High and Selective CO2 Uptake in a Cobalt Adeninate Metal-Organic Framework Exhibiting Pyrimidine- and Amino-Decorated Pores [J].
An, Jihyun ;
Geib, Steven J. ;
Rosi, Nathaniel L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (01) :38-+
[2]   Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide [J].
Arstad, Bjornar ;
Fjellvag, Helmer ;
Kongshaug, Kjell Ove ;
Swang, Ole ;
Blom, Richard .
ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2008, 14 (06) :755-762
[3]   Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties [J].
Banerjee, Rahul ;
Furukawa, Hiroyasu ;
Britt, David ;
Knobler, Carolyn ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (11) :3875-+
[4]   Gas storage in porous aromatic frameworks (PAFs) [J].
Ben, Teng ;
Pei, Cuiying ;
Zhang, Daliang ;
Xu, Jun ;
Deng, Feng ;
Jing, Xiaofei ;
Qiu, Shilun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) :3991-3999
[5]  
BRECK D, 1994, ZEOLITE MOL SIEVES
[6]   An Efficient Polymer Molecular Sieve for Membrane Gas Separations [J].
Carta, Mariolino ;
Malpass-Evans, Richard ;
Croad, Matthew ;
Rogan, Yulia ;
Jansen, Johannes C. ;
Bernardo, Paola ;
Bazzarelli, Fabio ;
McKeown, Neil B. .
SCIENCE, 2013, 339 (6117) :303-307
[7]   CMPs as Scaffolds for Constructing Porous Catalytic Frameworks: A Built-in Heterogeneous Catalyst with High Activity and Selectivity Based on Nanoporous Metalloporphyrin Polymers [J].
Chen, Long ;
Yang, Yong ;
Jiang, Donglin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (26) :9138-9143
[8]  
Chen Q., 2012, J AM CHEM SOC, V134, P6014
[9]   THERMODYNAMICS OF HIGH TEMPERATURE ADSORPTION OF SOME PERMANENT GASES BY POROUS CARBONS [J].
COLE, JH ;
EVERETT, DH ;
MARSHALL, CT ;
PANIEGO, AR ;
POWL, JC ;
Rodriguez-Reinoso, F .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1974, 70 :2154-2169
[10]   Nanoporous organic polymer networks [J].
Dawson, Robert ;
Cooper, Andrew I. ;
Adams, Dave J. .
PROGRESS IN POLYMER SCIENCE, 2012, 37 (04) :530-563