On the correlation of the Moebius functionwith rank-one systems

被引:47
作者
Bourgain, J. [1 ]
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2013年 / 120卷
关键词
EXCHANGE TRANSFORMATIONS; JOININGS;
D O I
10.1007/s11854-013-0016-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explore the "Moebius disjointness property" in the special context of rank-one transformations and verify this phenomenon for many of the "classical" models.
引用
收藏
页码:105 / 130
页数:26
相关论文
共 12 条
[1]   ON THE SPECTRAL TYPE OF ORNSTEINS CLASS ONE TRANSFORMATIONS [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1993, 84 (1-2) :53-63
[2]  
Bourgain J., 2013, FOURIER ANAL NUMBER, V28, P67, DOI [DOI 10.1007/978-1-4614-4075-8_5, 10.1007/978-1-4614-4075-8_5]
[3]   ON ERGODIC ACTIONS WHOSE SELF-JOININGS ARE GRAPHS [J].
DELJUNCO, A ;
RUDOLPH, D .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1987, 7 :531-557
[4]   CHACON AUTOMORPHISM HAS MINIMAL SELF JOININGS [J].
DELJUNCO, A ;
RAHE, M ;
SWANSON, L .
JOURNAL D ANALYSE MATHEMATIQUE, 1980, 37 :276-284
[5]   Joinings of three-interval exchange transformations [J].
Ferenczi, S ;
Holton, C ;
Zamboni, LQ .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :483-502
[6]   Structure of three-interval exchange transformations III: Ergodic and spectral properties [J].
Ferenczi, S ;
Holton, C ;
Zamboni, LQ .
JOURNAL D ANALYSE MATHEMATIQUE, 2004, 93 (1) :103-138
[7]   Structure of three-interval exchange transformations II: A combinatorial description of the trajectories [J].
Ferenczi, S ;
Holton, C ;
Zamboni, LQ .
JOURNAL D ANALYSE MATHEMATIQUE, 2003, 89 (1) :239-276
[8]  
Ferenczi S., 1997, C MATH, V73, P35
[9]  
Ferenczi S., 2001, ANN I FOURIER GRENOB, V51, P681
[10]  
Iwaniec H., 2004, ANAL NUMBER THEORY