The Role of Buffers in Wild-Type HEWL Amyloid Fibril Formation Mechanism

被引:42
|
作者
Brudar, Sandi [1 ]
Hribar-Lee, Barbara [1 ]
机构
[1] Univ Ljubljana, Fac Chem & Chem Technol, Vecna Pot 113, Ljubljana 1000, Slovenia
来源
BIOMOLECULES | 2019年 / 9卷 / 02期
关键词
lysozyme; amyloid fibrils; buffer-specific effects; EGG-WHITE LYSOZYME; MOLECULAR-DYNAMICS; THERMAL-STABILITY; HOFMEISTER SERIES; PROTEIN AGGREGATION; CIRCULAR-DICHROISM; THIOFLAVIN-T; BINDING; ION; UREA;
D O I
10.3390/biom9020065
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Amyloid fibrils, highly ordered protein aggregates, play an important role in the onset of several neurological disorders. Many studies have assessed amyloid fibril formation under specific solution conditions, but they all lack an important phenomena in biological solutions-buffer specific effects. We have focused on the formation of hen egg-white lysozyme (HEWL) fibrils in aqueous solutions of different buffers in both acidic and basic pH range. By means of UV-Vis spectroscopy, fluorescence measurements and CD spectroscopy, we have managed to show that fibrillization of HEWL is affected by buffer identity (glycine, TRIS, phosphate, KCl-HCl, cacodylate, HEPES, acetate), solution pH, sample incubation (agitated vs. static) and added excipients (NaCl and PEG). HEWL only forms amyloid fibrils at pH = 2.0 under agitated conditions in glycine and KCl-HCl buffers of high enough ionic strength. Phosphate buffer on the other hand stabilizes the HEWL molecules. Similar stabilization effect was achieved by addition of PEG12000 molecules to the solution.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Inhibition of HEWL fibril formation by taxifolin: Mechanism of action
    Mahdavimehr, Mohsen
    Meratan, Ali Akbar
    Ghobeh, Maryam
    Ghasemi, Atiyeh
    Saboury, Ali Akbar
    Nemat-Gorgani, Mohsen
    PLOS ONE, 2017, 12 (11):
  • [2] Inhibition of amyloid fibril formation of lysozyme by ascorbic acid and a probable mechanism of action
    Patel, Palak
    Parmar, Krupali
    Patel, Dhaval
    Kumar, Suresh
    Trivedi, Manan
    Das, Mill
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 114 : 666 - 678
  • [3] Stability of Osaka Mutant and Wild-Type Fibril Models
    Berhanu, Workalemahu M.
    Alred, Erik J.
    Hansmann, Ulrich H. E.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (41) : 13063 - 13070
  • [4] Sucrose modulates insulin amyloid-like fibril formation: effect on the aggregation mechanism and fibril morphology
    Marasini, Carlotta
    Vesterga, Bente
    Vestergaard, Bente
    RSC ADVANCES, 2017, 7 (17): : 10487 - 10493
  • [5] The role of lipid-protein interactions in amyloid-type protein fibril formation
    Gorbenko, Galyna P.
    Kinnunen, Pam K. J.
    CHEMISTRY AND PHYSICS OF LIPIDS, 2006, 141 (1-2) : 72 - 82
  • [6] The role of glycosylation in amyloid fibril formation of bovine κ-casein
    Nadugala, Barana Hewa
    Hantink, Rick
    Nebl, Tom
    White, Jacinta
    Pagel, Charles N.
    Ranadheera, C. S.
    Logan, Amy
    Raynes, Jared K.
    CURRENT RESEARCH IN FOOD SCIENCE, 2023, 6
  • [7] The role of the acidic domain of α-synuclein in amyloid fibril formation: a molecular dynamics study
    Park, SeongByeong
    Yoon, Jeseong
    Jang, Soonmin
    Lee, Kyunghee
    Shin, Seokmin
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2016, 34 (02) : 376 - 383
  • [8] Serpin acceleration of amyloid fibril formation: A role for accessory proteins
    Powers, Glenn A.
    Pham, Chi L. L.
    Pearce, Mary C.
    Howlett, Geoffrey J.
    Bottomley, Stephen P.
    JOURNAL OF MOLECULAR BIOLOGY, 2007, 366 (02) : 666 - 676
  • [9] The Role of Initial Oligomers in Amyloid Fibril Formation by Human Stefin B
    Taler-Vercic, Ajda
    Kirsipuu, Tiina
    Friedemann, Merlin
    Noormaegi, Andra
    Polajnar, Mira
    Smirnova, Julia
    Znidaric, Magda Tusek
    Zganec, Matjaz
    Skarabot, Miha
    Vilfan, Andrej
    Staniforth, Rosemary A.
    Palumaa, Peep
    Zerovnik, Eva
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (09) : 18362 - 18384
  • [10] The role of protein stability, solubility, and net charge in amyloid fibril formation
    Schmittschmitt, JP
    Scholtz, JM
    PROTEIN SCIENCE, 2003, 12 (10) : 2374 - 2378