A B-spline approach for empirical mode decompositions

被引:224
作者
Chen, QH
Huang, N
Riemenschneider, S
Xu, YS
机构
[1] Hubei Univ, Fac Math & Comp Sci, Wuhan 430062, Peoples R China
[2] NASA, Goddard Space Flight Ctr, Lab Hydrospher Proc, Oceans & Ice Branch, Greenbelt, MD 20771 USA
[3] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[4] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[5] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
美国国家科学基金会; 美国国家航空航天局; 中国国家自然科学基金;
关键词
B-splines; nonlinear and nonstationary signals; empirical mode decompositions; Hilbert transforms;
D O I
10.1007/s10444-004-7614-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an alternative B-spline approach for empirical mode decompositions for nonlinear and nonstationary signals. Motivated by this new approach, we derive recursive formulas of the Hilbert transform of B-splines and discuss Euler splines as spline intrinsic mode functions in the decomposition. We also develop the Bedrosian identity for signals having vanishing moments. We present numerical implementations of the B-spline algorithm for an earthquake signal and compare the numerical performance of this approach with that given by the standard empirical mode decomposition. Finally, we discuss several open mathematical problems related to the empirical mode decomposition.
引用
收藏
页码:171 / 195
页数:25
相关论文
共 27 条
  • [1] [Anonymous], 1935, PRINCIPLES QUANTUM M
  • [2] PRODUCT THEOREM FOR HILBERT TRANSFORMS
    BEDROSIAN, E
    [J]. PROCEEDINGS OF THE IEEE, 1963, 51 (05) : 868 - &
  • [3] Bennett C., 1988, INTERPOLATION OPERAT
  • [4] Cohen L., 1995, TIME FREQUENCY ANAL
  • [5] Daubechies I., 1992, 10 LECT WAVELETS CBM, V61
  • [6] de Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
  • [7] DIKS C, 1997, NONLINEAR TIME SERIE
  • [8] FLANDRIN P, 2003, IN PRESS IEEE SIGNAL
  • [9] Huang N. E., 2003, US Patent, Patent No. [10-073857, 10073857]
  • [10] A confidence limit for the empirical mode decomposition and Hilbert spectral analysis
    Huang, NE
    Wu, MLC
    Long, SR
    Shen, SSP
    Qu, WD
    Gloersen, P
    Fan, KL
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2037): : 2317 - 2345