Riemannian metrics on differentiable stacks

被引:14
作者
del Hoyo, Matias [1 ]
Fernandes, Rui Loja [2 ]
机构
[1] Univ Fed Fluminense, Dept Geometria IME, Rua Prof Marcos Waldemar Freitas Reis, BR-24210201 Niteroi, RJ, Brazil
[2] Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
LIE GROUPOIDS; LINEARIZATION; DEFORMATIONS;
D O I
10.1007/s00209-018-2154-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Riemannian metrics on Lie groupoids in the relative setting. We show that any split fibration between proper groupoids can be made Riemannian, and we use these metrics to linearize proper groupoid fibrations. As an application, we derive rigidity theorems for Lie groupoids, which unify, simplify and improve similar results for classic geometries. Then we establish the Morita invariance for our metrics, introduce a notion for metrics on stacks, and use them to construct stacky tubular neighborhoods and to prove a stacky Ehresmann theorem.
引用
收藏
页码:103 / 132
页数:30
相关论文
共 26 条
[1]  
[Anonymous], ARXIV151002530
[2]  
[Anonymous], 1972, LECT NOTES MATH
[3]  
Behrend K, 2011, J SYMPLECT GEOM, V9, P285
[4]  
Bursztyn H., ARXIV151009208
[5]  
Crainic M, 2013, ANN SCI ECOLE NORM S, V46, P723
[6]  
del Hoyo M., GEODESICS DIFFERENTI
[7]  
del Hoyo M., 2012, CAHIERS TOPOLOGIE GE, V53, P82
[8]  
del Hoyo M., 2015, ARXIV14045989
[9]  
del Hoyo M., ARXIV180710748
[10]   Lie groupoids and their orbispaces [J].
del Hoyo, Matias L. .
PORTUGALIAE MATHEMATICA, 2013, 70 (02) :161-209