Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants

被引:79
作者
Singh, Pramod Kumar [1 ]
Gautam, Shruti [1 ]
机构
[1] Mahatma Gandhi Kashi Vidyapeeth Univ, Udai Pratap Autonomous Coll, Dept Bot, Plant Physiol Lab, Varanasi 221002, Uttar Pradesh, India
关键词
Adaptation; Antioxidant enzymes; Compatible solutes; Reactive oxygen species; Salicylic acid; Salinity; OXIDATIVE STRESS; SALT-STRESS; ARABIDOPSIS-THALIANA; OSMOTIC-STRESS; DIFFERENTIAL RESPONSES; ANTIOXIDATIVE SYSTEM; LIPID-PEROXIDATION; WHEAT SEEDLINGS; PROTEIN-KINASE; RICE SEEDLINGS;
D O I
10.1007/s11738-013-1279-9
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salinity stress is one of the major abiotic stresses affecting plant growth and productivity globally. In order to improve the yields of plants growing under salt stress bear remarkable importance to supply sustainable agriculture. Acclimation of plants to salinized condition depends upon activation of cascade of molecular network involved in stress sensing/perception, signal transduction, and the expression of specific stress-related genes and metabolites. Isolation of salt overly sensitive (SOS) genes by sos mutants shed us light on the relationship between ion homeostasis and salinity tolerance. Regulation of antioxidative system to maintain a balance between the overproduction of reactive oxygen species and their scavenging to keep them at signaling level for reinstating metabolic activity has been elucidated. However, osmotic adaptation and metabolic homeostasis under abiotic stress environment is required. Recently, role of phytohormones like Abscisic acid, Jasmonic acid, and Salicylic acid in the regulation of metabolic network under osmotic stress condition has emerged through crosstalk between chemical signaling pathways. Thus, abiotic stress signaling and metabolic balance is an important area with respect to increase crop yield under suboptimal conditions. This review focuses on recent developments on improvement in salinity tolerance aiming to contribute sustainable plant yield under saline conditions in the face of climate change.
引用
收藏
页码:2345 / 2353
页数:9
相关论文
共 91 条
[1]   Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgare L.) varieties [J].
Acar, O ;
Türkan, I ;
Özdemir, F .
ACTA PHYSIOLOGIAE PLANTARUM, 2001, 23 (03) :351-356
[2]   Role of superoxide dismutases (SODs) in controlling oxidative stress in plants [J].
Alscher, RG ;
Erturk, N ;
Heath, LS .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (372) :1331-1341
[3]   Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit [J].
Badawi, GH ;
Kawano, N ;
Yamauchi, Y ;
Shimada, E ;
Sasaki, R ;
Kubo, A ;
Tanaka, K .
PHYSIOLOGIA PLANTARUM, 2004, 121 (02) :231-238
[4]   ADAPTATIONS TO ENVIRONMENTAL STRESSES [J].
BOHNERT, HJ ;
NELSON, DE ;
JENSEN, RG .
PLANT CELL, 1995, 7 (07) :1099-1111
[5]   Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings [J].
Borsani, O ;
Valpuesta, V ;
Botella, MA .
PLANT PHYSIOLOGY, 2001, 126 (03) :1024-1030
[6]   Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4 [J].
Brodersen, Peter ;
Petersen, Morten ;
Nielsen, Henrik Bjorn ;
Zhu, Shijiang ;
Newman, Mari-Anne ;
Shokat, Kevan M. ;
Rietz, Steffen ;
Parker, Jane ;
Mundy, John .
PLANT JOURNAL, 2006, 47 (04) :532-546
[7]   Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii [J].
Chen, CB ;
Dickman, MB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (09) :3459-3464
[8]   Understanding and improving salt tolerance in plants [J].
Chinnusamy, V ;
Jagendorf, A ;
Zhu, JK .
CROP SCIENCE, 2005, 45 (02) :437-448
[9]   Systemic signalling of environmental cues in Arabidopsis leaves [J].
Coupe, SA ;
Palmer, BG ;
Lake, JA ;
Overy, SA ;
Oxborough, K ;
Woodward, FI ;
Gray, JE ;
Quick, WP .
JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (02) :329-341
[10]   Genomic analysis of MAP kinase cascades in Arabidopsis defense responses [J].
Cvetkovska, Marina ;
Rampitsch, Christof ;
Bykova, Natalia ;
Xing, Tim .
PLANT MOLECULAR BIOLOGY REPORTER, 2005, 23 (04) :331-343