p-ADIC FAMILIES AND GALOIS REPRESENTATIONS FOR GSp(4) AND GL(2)

被引:0
作者
Jorza, Andrei [1 ]
机构
[1] CALTECH, Dept Math, Pasadena, CA 91125 USA
关键词
IMAGINARY QUADRATIC FIELDS; MODULAR-FORMS; CONJECTURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this brief paper, we prove local-global compatibility for holomorphic Siegel modular forms with Iwahori level. In previous work, we proved a weaker version of this result (up to a quadratic twist) and one of the goals of this paper is to remove this quadratic twist by different methods, using p-adic families. We further study the local Galois representation at p for nonregular holomorphic Siegel modular forms. Then we apply the results to the setting of modular forms on GL(2) over a quadratic imaginary field and prove results on the local Galois representation l, as well as crystallinity results at p.
引用
收藏
页码:987 / 996
页数:10
相关论文
共 24 条
[1]  
Andreatta F., 2011, PREPRINT
[2]  
Barnet-Lamb T., PREPRINT
[3]   l-adic Representations Associated to Modular Forms over Imaginary Quadratic Fields [J].
Berger, Tobias ;
Harcos, Gergely .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
[4]  
Brinon O., PREPRINT
[5]  
Caraiani A., 2010, MATH10102188V1 ARXIV
[6]  
Chenevier G, 2004, J REINE ANGEW MATH, V570, P143
[7]   The local Langlands conjecture for GSp (4) [J].
Gan, Wee Teck ;
Takeda, Shuichiro .
ANNALS OF MATHEMATICS, 2011, 173 (03) :1841-1882
[8]   ON ENDOSCOPY AND THE REFINED GROSS-PRASAD CONJECTURE FOR (SO5, SO4) [J].
Gan, Wee Teck ;
Ichino, Atsushi .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2011, 10 (02) :235-324
[9]   L-ADIC REPRESENTATIONS ASSOCIATED TO MODULAR-FORMS OVER IMAGINARY QUADRATIC FIELDS .1. LIFTING TO GSP4(Q) [J].
HARRIS, M ;
SOUDRY, D ;
TAYLOR, R .
INVENTIONES MATHEMATICAE, 1993, 112 (02) :377-411
[10]  
Jorza A., 2010, THESIS PRINCETON U