Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology

被引:1112
作者
Steentoft, Catharina [1 ,2 ,3 ]
Vakhrushev, Sergey Y. [1 ,2 ,3 ]
Joshi, Hiren J. [1 ,2 ,3 ,4 ]
Kong, Yun [1 ,2 ,3 ]
Vester-Christensen, Malene B. [1 ,2 ,3 ]
Schjoldager, Katrine T-B G. [1 ,2 ,3 ]
Lavrsen, Kirstine [1 ,2 ,3 ]
Dabelsteen, Sally [1 ,2 ,3 ]
Pedersen, Nis B. [1 ,2 ,3 ]
Marcos-Silva, Lara [1 ,2 ,3 ,5 ]
Gupta, Ramneek [4 ]
Bennett, Eric Paul [1 ,2 ,3 ]
Mandel, Ulla [1 ,2 ,3 ]
Brunak, Soren [6 ,7 ]
Wandall, Hans H. [1 ,2 ,3 ]
Levery, Steven B. [1 ,2 ,3 ]
Clausen, Henrik [1 ,2 ,3 ]
机构
[1] Univ Copenhagen, Copenhagen Ctr Glyc, Dept Cellular, DK-2200 Copenhagen N, Denmark
[2] Univ Copenhagen, Copenhagen Ctr Glyc, Dept Mol Med, DK-2200 Copenhagen N, Denmark
[3] Univ Copenhagen, Sch Dent, DK-2200 Copenhagen N, Denmark
[4] Tech Univ Denmark, Ctr Biol Sequence Anal, Dept Syst Biol, DK-2800 Lyngby, Denmark
[5] Univ Porto, IPATIMUP, Inst Mol Pathol & Immunol, P-4100 Porto, Portugal
[6] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, Horsholm, Denmark
[7] Univ Copenhagen, Novo Nordisk Fdn Ctr Prot Res, DK-2200 Copenhagen N, Denmark
基金
新加坡国家研究基金会;
关键词
GALNT; GPCRs; LDLR; TNF alpha; Zinc finger nucleases; POLYPEPTIDE N-ACETYLGALACTOSAMINYLTRANSFERASE; LINKED GLYCOSYLATION; LDL RECEPTOR; PROTEIN; EXPRESSION; TRANSFERASES; CONSERVATION; DROSOPHILA; PEPTIDES; DOMAIN;
D O I
10.1038/emboj.2013.79
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glycosylation is the most abundant and diverse posttranslational modification of proteins. While several types of glycosylation can be predicted by the protein sequence context, and substantial knowledge of these glycoproteomes is available, our knowledge of the GalNAc-type O-glycosylation is highly limited. This type of glycosylation is unique in being regulated by 20 polypeptide GalNAc-transferases attaching the initiating GalNAc monosaccharides to Ser and Thr (and likely some Tyr) residues. We have developed a genetic engineering approach using human cell lines to simplify O-glycosylation (SimpleCells) that enables proteome-wide discovery of O-glycan sites using 'bottom-up' ETD-based mass spectrometric analysis. We implemented this on 12 human cell lines from different organs, and present a first map of the human O-glycoproteome with almost 3000 glycosites in over 600 O-glycoproteins as well as an improved NetOGlyc4.0 model for prediction of O-glycosylation. The finding of unique subsets of O-glycoproteins in each cell line provides evidence that the O-glycoproteome is differentially regulated and dynamic. The greatly expanded view of the O-glycoproteome should facilitate the exploration of how site-specific O-glycosylation regulates protein function.
引用
收藏
页码:1478 / 1488
页数:11
相关论文
共 52 条
[1]   Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets [J].
Alfaro, Joshua F. ;
Gong, Cheng-Xin ;
Monroe, Matthew E. ;
Aldrich, Joshua T. ;
Clauss, Therese R. W. ;
Purvine, Samuel O. ;
Wang, Zihao ;
Camp, David G., II ;
Shabanowitz, Jeffrey ;
Stanley, Pamela ;
Hart, Gerald W. ;
Hunt, Donald F. ;
Yang, Feng ;
Smith, Richard D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (19) :7280-7285
[2]   cDNA cloning and expression of a novel human UDP-N-acetyl-alpha-D-galactosamine - Polypeptide N-acetylgalactosaminyltransferase, GalNAc-T3 [J].
Bennett, EP ;
Hassan, H ;
Clausen, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (29) :17006-17012
[3]   Control of mucin-type O-glycosylation: A classification of the polypeptide GalNAc-transferase gene family [J].
Bennett, Eric P. ;
Mandel, Ulla ;
Clausen, Henrik ;
Gerken, Thomas A. ;
Fritz, Timothy A. ;
Tabak, Lawrence A. .
GLYCOBIOLOGY, 2012, 22 (06) :736-756
[4]   How to Dig Deeper? Improved Enrichment Methods for Mucin Core-1 Type Glycopeptides [J].
Darula, Z. ;
Sherman, J. ;
Medzihradszky, K. F. .
MOLECULAR & CELLULAR PROTEOMICS, 2012, 11 (07)
[5]  
DAVIS CG, 1986, J BIOL CHEM, V261, P2828
[6]   GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli [J].
DeFrees, Shawn ;
Wang, Zhi-Guang ;
Xing, Ruye ;
Scott, Arthur E. ;
Wang, Jin ;
Zopf, David ;
Gouty, Dominique L. ;
Sjoberg, Eric R. ;
Panneerselvam, Krishnasamy ;
Brinkman-Van der Linden, Els C. M. ;
Bayer, Robert J. ;
Tarp, Mads A. ;
Clausen, Henrik .
GLYCOBIOLOGY, 2006, 16 (09) :833-843
[7]   There exist at least 30 human G-protein-coupled receptors with long Ser/Thr-rich N-termini [J].
Fredriksson, R ;
Gloriam, DEI ;
Höglund, PJ ;
Lagerström, MC ;
Schiöth, HB .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 301 (03) :725-734
[8]   Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins [J].
Geiger, Tamar ;
Wehner, Anja ;
Schaab, Christoph ;
Cox, Juergen ;
Mann, Matthias .
MOLECULAR & CELLULAR PROTEOMICS, 2012, 11 (03)
[9]   Emerging Paradigms for the Initiation of Mucin-type Protein O-Glycosylation by the Polypeptide GalNAc Transferase Family of Glycosyltransferases [J].
Gerken, Thomas A. ;
Jamison, Oliver ;
Perrine, Cynthia L. ;
Collette, Jeremy C. ;
Moinova, Helen ;
Ravi, Lakshmeswari ;
Markowitz, Sanford D. ;
Shen, Wei ;
Patel, Himatkumar ;
Tabak, Lawrence A. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (16) :14493-14507
[10]   Quantitative proteomics analysis of the secretory pathway [J].
Gilchrist, Annalyn ;
Au, Catherine E. ;
Hiding, Johan ;
Bell, Alexander W. ;
Fernandez-Rodriguez, Julia ;
Lesimple, Souad ;
Nagaya, Hisao ;
Roy, Line ;
Gosline, Sara J. C. ;
Hallett, Michael ;
Paiement, Jacques ;
Kearney, Robert E. ;
Nilsson, Tommy ;
Bergeron, John J. M. .
CELL, 2006, 127 (06) :1265-1281