Nonlinear diffusion equations driven by the p(•)-Laplacian

被引:30
作者
Akagi, Goro [1 ]
Matsuura, Kei [2 ]
机构
[1] Kobe Univ, Grad Sch Syst Informat, Nada Ku, Kobe, Hyogo 6578501, Japan
[2] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2013年 / 20卷 / 01期
关键词
p(center dot)-Laplacian; Nonlinear diffusion; Subdifferential; Parabolic equation; Variable exponent Lebesgue; Sobolev spaces; ANISOTROPIC PARABOLIC EQUATIONS; VARIABLE EXPONENT; ELECTRORHEOLOGICAL FLUIDS; SOBOLEV EMBEDDINGS; WELL-POSEDNESS; SPACES; FUNCTIONALS; EXISTENCE; THEOREMS; LIMIT;
D O I
10.1007/s00030-012-0153-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with nonlinear diffusion equations driven by the p(center dot)-Laplacian with variable exponents in space. The well-posedness is first checked for measurable exponents by setting up a subdifferential approach. The main purposes are to investigate the large-time behavior of solutions as well as to reveal the limiting behavior of solutions as p(center dot) diverges to the infinity in the whole or in a subset of the domain. To this end, the recent developments in the studies of variable exponent Lebesgue and Sobolev spaces are exploited, and moreover, the spatial inhomogeneity of variable exponents p(center dot) is appropriately controlled to obtain each result.
引用
收藏
页码:37 / 64
页数:28
相关论文
共 40 条
[1]   Regularity results for parabolic systems related to a class of non-Newtonian fluids [J].
Acerbi, E ;
Mingione, G ;
Seregin, GA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (01) :25-60
[2]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[3]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[4]  
Akagi G., 2004, Abstract and Applied Analysis, V2004, P907, DOI 10.1155/S1085337504403030
[5]  
Akagi G., 2004, Adv. Math. Sci. Appl, V14, P683
[6]  
Akagi G, 2011, DISCRETE CONT DYN-A, V31, P22
[7]  
[Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[8]   Blow-up of solutions to parabolic equations with nonstandard growth conditions [J].
Antontsev, S. ;
Shmarev, S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (09) :2633-2645
[9]   Vanishing solutions of anisotropic parabolic equations with variable nonlinearity [J].
Antontsev, S. ;
Shmarev, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (02) :371-391
[10]   ANISOTROPIC PARABOLIC EQUATIONS WITH VARIABLE NONLINEARITY [J].
Antontsev, S. ;
Shmarev, S. .
PUBLICACIONS MATEMATIQUES, 2009, 53 (02) :355-399