A MODULE-THEORETIC INTERPRETATION OF SCHIFFLER'S EXPANSION FORMULA

被引:1
|
作者
Bruestle, Thomas [1 ]
Zhang, Jie [2 ]
机构
[1] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Cluster algebras; Cluster categories; Marked surfaces; Representations; GORENSTEIN HOMOLOGICAL DIMENSIONS; RINGS;
D O I
10.1080/00927872.2011.629267
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a module-theoretic interpretation of Schiffler's expansion formula which is defined combinatorially in terms of complete (Gamma, gamma)-paths in order to get the expansion of the cluster variables in the cluster algebra of a marked surface (S, M). Based on the geometric description of the indecomposable objects of the cluster category of the marked surface (S, M), we show the coincidence of Schiffler-Thomas' expansion formula and the cluster character defined by Palu.
引用
收藏
页码:260 / 283
页数:24
相关论文
共 3 条