A MODULE-THEORETIC INTERPRETATION OF SCHIFFLER'S EXPANSION FORMULA

被引:2
作者
Bruestle, Thomas [1 ]
Zhang, Jie [2 ]
机构
[1] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Cluster algebras; Cluster categories; Marked surfaces; Representations; GORENSTEIN HOMOLOGICAL DIMENSIONS; RINGS;
D O I
10.1080/00927872.2011.629267
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a module-theoretic interpretation of Schiffler's expansion formula which is defined combinatorially in terms of complete (Gamma, gamma)-paths in order to get the expansion of the cluster variables in the cluster algebra of a marked surface (S, M). Based on the geometric description of the indecomposable objects of the cluster category of the marked surface (S, M), we show the coincidence of Schiffler-Thomas' expansion formula and the cluster character defined by Palu.
引用
收藏
页码:260 / 283
页数:24
相关论文
共 12 条
[1]  
Bennis D, 2010, INT ELECTRON J ALGEB, V8, P30
[2]   FIRST, SECOND, AND THIRD CHANGE OF RINGS THEOREMS FOR GORENSTEIN HOMOLOGICAL DIMENSIONS [J].
Bennis, Driss ;
Mahdou, Najib .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (10) :3837-3850
[3]   RINGS OVER WHICH ALL MODULES ARE STRONGLY GORENSTEIN PROJECTIVE [J].
Bennis, Driss ;
Mahdou, Najib ;
Ouarghi, Khalid .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (03) :749-759
[4]  
Bennis D, 2010, P AM MATH SOC, V138, P461
[5]  
Fuchs L., 2001, MODULES NONNOETHERIA
[6]   INTEGRAL DOMAINS IN WHICH EACH NON-ZERO IDEAL IS DIVISORIAL [J].
HEINZER, W .
MATHEMATIKA, 1968, 15 (30P2) :164-&
[7]   Gorenstein homological dimensions [J].
Holm, H .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 189 (1-3) :167-193
[8]  
Kaplansky I., 1974, Commutative Rings
[9]   On (Strongly) Gorenstein (Semi)Hereditary Rings [J].
Mahdou, Najib ;
Tamekkante, Mohammed .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2011, 36 (03) :431-440
[10]  
Rotman JJ, 2009, UNIVERSITEXT, P1, DOI 10.1007/978-0-387-68324-9_1