Trivial centralizers for axiom A diffeomorphisms

被引:13
作者
Fisher, Todd [1 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
关键词
D O I
10.1088/0951-7715/21/11/002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show there is a residual set of non-Anosov C-infinity axiom A diffeomorphisms with the no cycles property whose elements have trivial centralizer. If M is a surface and 2 <= r <= infinity, then we will show there exists an open and dense set of C-r axiom A diffeomorphisms with the no cycles property whose elements have trivial centralizer. Additionally, we examine commuting diffeomorphisms preserving a compact invariant set Lambda where Lambda is a hyperbolic chain recurrent class for one of the diffeomorphisms.
引用
收藏
页码:2505 / 2517
页数:13
相关论文
共 18 条
[1]   Generic diffeomorphisms on compact surfaces [J].
Abdenur, F ;
Bonatti, C ;
Crovisier, S ;
Díaz, LJ .
FUNDAMENTA MATHEMATICAE, 2005, 187 (02) :127-159
[2]   DIFFEOMORPHISMS WITH DISCRETE CENTRALIZER [J].
ANDERSON, B .
TOPOLOGY, 1976, 15 (02) :143-147
[3]  
[Anonymous], DISCRETE CONTIN DYNA
[4]  
BONATTI C, ARXIV08041416
[5]  
Brin M., 2002, INTRO DYNAMICAL SYST
[6]   Centralizers of partially hyperbolic diffeomorphisms [J].
Burslem, L .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 :55-87
[7]   Hyperbolic sets that are not locally maximal [J].
Fisher, Todd .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2006, 26 :1491-1509
[8]   HYPERBOLICITY AND CYCLES [J].
FRANKE, JE ;
SELGRADE, JF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 245 (NOV) :251-262
[9]  
Hartman P., 1960, B SOC MAT MEX, V5, P220
[10]  
Katok A., 1997, Introduction to the Modern Theory of Dynamical Systems