Toric complete intersection codes

被引:9
作者
Soprunov, Ivan [1 ]
机构
[1] Cleveland State Univ, Dept Math, Cleveland, OH 44115 USA
关键词
Evaluation codes; Global residue; Toric variety; Newton polytope; CAYLEY-BACHARACH; SURFACE CODES; RESIDUES; DISTANCE; GEOMETRY;
D O I
10.1016/j.jsc.2012.08.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we construct evaluation codes on zero-dimensional complete intersections in toric varieties and give lower bounds for their minimum distance. This generalizes the results of Gold-Little-Schenck and Ballico-Fontanari who considered evaluation codes on complete intersections in the projective space. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:374 / 385
页数:12
相关论文
共 32 条
[1]  
[Anonymous], 1978, USPEKHI MAT NAUK
[2]  
[Anonymous], 1993, ANN MATH STUD
[3]   The Horace method for error-correcting codes [J].
Ballico, Edoardo ;
Fontanari, Claudio .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2006, 17 (02) :135-139
[4]  
Bernstein D. N., 1975, FUNCT ANAL APPL, V9, P183, DOI [DOI 10.1007/BF01075595, 10.1007/BF01075595]
[5]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[6]   A global view of residues in the torus [J].
Cattani, E ;
Dickenstein, A .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 117 :119-144
[7]   Residues in toric varieties [J].
Cattani, E ;
Cox, D ;
Dickenstein, A .
COMPOSITIO MATHEMATICA, 1997, 108 (01) :35-76
[8]  
Cattani E., 2011, ARXIV11121012V1MATHA
[9]   Toric residues [J].
Cox, DA .
ARKIV FOR MATEMATIK, 1996, 34 (01) :73-96
[10]   Reed-Muller codes on complete intersections [J].
Duursma, IM ;
Rentería, C ;
Tapia-Recillas, H .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2001, 11 (06) :455-462