The use of pretreated palm oil mill effluent for acetone-butanol-ethanol fermentation by Clostridium saccharoperbutylacetonicum N1-4

被引:19
|
作者
Al-Shorgani, Najeeb Kaid Nasser [1 ]
Kalil, Mohd Sahaid [2 ]
Ali, Ehsan [2 ]
Hamid, Aidil Abdul [1 ]
Yusoff, Wan Mohtar Wan [1 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Biosci & Biotechnol, Ukm Bangi 43600, Selangor, Malaysia
[2] Univ Kebangsaan Malaysia, Fac Engn, Dept Chem & Proc Engn, Ukm Bangi 43600, Selangor, Malaysia
关键词
POME hydrolysate; Fermentation; Acetone-butanol-ethanol (ABE); Clostridium saccharoperbutylacetonicum N1-4; BEIJERINCKII; INHIBITORS; ACID; ACETOBUTYLICUM; REMOVAL; HYDROLYSIS; STRAW;
D O I
10.1007/s10098-012-0456-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Palm oil mill effluent (POME) was used as an acetone-butanol-ethanol (ABE) fermentation medium using Clostridium saccharoperbutylacetonicum N1-4. Various pretreatment methods were applied on POME to increase the amount of fermentable sugars leading to enhanced ABE production. Sulfuric acid-treated POME (SA-POME) method was found to give the highest yield of total reducing sugars (glucose, cellobiose, xylose, and arabinose) as compared to other pretreatment methods. An increment in the concentration of H2SO4 from 1 to 2% resulted in the enhanced release of reducing sugars (18.3, 26.3 g/L, respectively). However, the treatment of POME with 3% H2SO4, decreased the reducing sugars to 21.6 g/L and consequently, the total ABE production was also reduced. The highest yield of ABE was observed from a culture grown with POME treated by 1% H2SO4. The total ABE production from 1, 2, and 3% SA-POME was obtained as 2.2, 0.45, and 0.41 g/L, respectively. Although, enzymatically treated POME (EH-POME) could produce 4.42 g/L glucose, sulfuric acid treatment (1%) was able to liberate only 1.76 g/L glucose, ABE production was higher when 1% SA-POME was used. Low yield of ABE from enzymatically treated POME can be attributed to the production of some inhibitors during hydrolysis of POME. When EH-POME was treated with XAD-4 resin to nullify the inhibitors, the production of ABE was increased to 4.29 g/L, and ABE yield was also increased to 0.29 g/g. In conclusion, enzymatic hydeolysis of POME followed by elution to XAD-4 column can be proposed as the best pretreatment method for highest productivity of ABE. It was found that addition of P2 medium to the POME hydrolysates was able to improve the production of butanol except in raw POME and sulfuric acid hydrolysates.
引用
收藏
页码:879 / 887
页数:9
相关论文
共 50 条
  • [1] The use of pretreated palm oil mill effluent for acetone–butanol–ethanol fermentation by Clostridium saccharoperbutylacetonicum N1-4
    Najeeb Kaid Nasser Al-Shorgani
    Mohd Sahaid Kalil
    Ehsan Ali
    Aidil Abdul Hamid
    Wan Mohtar Wan Yusoff
    Clean Technologies and Environmental Policy, 2012, 14 : 879 - 887
  • [2] Production of butanol by Clostridium saccharoperbutylacetonicum N1-4 from palm kernel cake in acetone-butanol-ethanol fermentation using an empirical model
    Shukor, Hafiza
    Al-Shorgani, Najeeb Kaid Nasser
    Abdeshahian, Peyman
    Hamid, Aidil Abdul
    Anuar, Nurina
    Abd Rahman, Norliza
    Kalil, Mohd Sahaid
    BIORESOURCE TECHNOLOGY, 2014, 170 : 565 - 573
  • [3] Production of Acetone-Butanol-Ethanol (ABE) in Direct Fermentation of Cassava by Clostridium saccharoperbutylacetonicum N1-4
    Thang, Vu Hong
    Kanda, Kohzo
    Kobayashi, Genta
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2010, 161 (1-8) : 157 - 170
  • [4] Enhancement of sucrose metabolism in Clostridium saccharoperbutylacetonicum N1-4 through metabolic engineering for improved acetone-butanol-ethanol (ABE) fermentation
    Zhang, Jie
    Wang, Pixiang
    Wang, Xiaofei
    Feng, Jun
    Sandhu, Hardev S.
    Wang, Yi
    BIORESOURCE TECHNOLOGY, 2018, 270 : 430 - 438
  • [5] Enhancement of solvent production by overexpressing key genes of the acetone-butanol-ethanol fermentation pathway in Clostridium saccharoperbutylacetonicum N1-4
    Wang, Shaohua
    Dong, Sheng
    Wang, Yi
    BIORESOURCE TECHNOLOGY, 2017, 245 : 426 - 433
  • [6] A Novel Process for Direct Production of Acetone-Butanol-Ethanol from Native Starches Using Granular Starch Hydrolyzing Enzyme by Clostridium saccharoperbutylacetonicum N1-4
    Vu Hong Thang
    Kobayashi, Genta
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2014, 172 (04) : 1818 - 1831
  • [7] Robustness of Clostridium saccharoperbutylacetonicum for acetone-butanol-ethanol production: Effects of lignocellulosic sugars and inhibitors
    Yao, Dunfan
    Dong, Sheng
    Wang, Pixiang
    Chen, Tianhu
    Wang, Jin
    Yue, Zheng-Bo
    Wang, Yi
    FUEL, 2017, 208 : 549 - 557
  • [8] Membrane-assisted extractive butanol fermentation by Clostridium saccharoperbutylacetonicum N1-4 with 1-dodecanol as the extractant
    Tanaka, Shigemitsu
    Tashiro, Yukihiro
    Kobayashi, Genta
    Ikegami, Toru
    Negishi, Hideyuki
    Sakaki, Keiji
    BIORESOURCE TECHNOLOGY, 2012, 116 : 448 - 452
  • [9] High Acetone-Butanol-Ethanol Production from Food Waste by Recombinant Clostridium saccharoperbutylacetonicum in Batch and Continuous Immobilized-Cell Fermentation
    Jin, Qing
    An, Zhaohui
    Damle, Ashok
    Poe, Nicholas
    Wu, Jian
    Wang, Hengjian
    Wang, Zhiwu
    Huang, Haibo
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (26): : 9822 - 9832
  • [10] Effect of Buffering System on Acetone-Butanol-Ethanol Fermentation by Clostridium acetobutylicum ATCC 824 using Pretreated Oil Palm Empty Fruit Bunch
    Ibrahim, Mohamad Faizal
    Linggang, Siren
    Jenol, Mohd Azwan
    Yee, Phang Lai
    Abd-Aziz, Suraini
    BIORESOURCES, 2015, 10 (03): : 3890 - 3907