A Double-ended Queue with Catastrophes and Repairs, and a Jump-diffusion Approximation

被引:48
作者
Di Crescenzo, Antonio [1 ]
Giorno, Virginia [1 ]
Kumar, Balasubramanian Krishna [2 ]
Nobile, Amelia G. [1 ]
机构
[1] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy
[2] Anna Univ, Dept Math, Madras 600025, Tamil Nadu, India
关键词
Bilateral birth-death processes; Double-ended queues; Transient probabilities; Catastrophes; Disasters; Repairs; Continuous approximations; Jump-diffusion processes; Transition densities; BIRTH-DEATH PROCESSES; TRANSIENT ANALYSIS; M/M/1; QUEUE; TIME;
D O I
10.1007/s11009-011-9214-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a system performing a continuous-time random walk on the integers, subject to catastrophes occurring at constant rate, and followed by exponentially-distributed repair times. After any repair the system starts anew from state zero. We study both the transient and steady-state probability laws of the stochastic process that describes the state of the system. We then derive a heavy-traffic approximation to the model that yields a jump-diffusion process. The latter is equivalent to a Wiener process subject to randomly occurring jumps, whose probability law is obtained. The goodness of the approximation is finally discussed.
引用
收藏
页码:937 / 954
页数:18
相关论文
共 31 条
  • [21] Kimura T, 2004, EC J HOKKAIDO U, V33, P37
  • [22] Dual processes to solve single server systems
    Krinik, A
    Rubino, G
    Marcus, D
    Swift, RJ
    Kasfy, H
    Lam, H
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 135 (01) : 121 - 147
  • [23] Transient probability functions of finite birth-death processes with catastrophes
    Krinik, Alan
    Mortensen, Carrie
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (05) : 1530 - 1543
  • [24] Krishna Kumar B, 2003, MATH SCI, V28, P129
  • [25] Transient analysis of a single server queue with catastrophes, failures and repairs
    Kumar, B. Krishna
    Krishnamoorthy, A.
    Madheswari, S. Pavai
    Basha, Sadiq
    [J]. QUEUEING SYSTEMS, 2007, 56 (3-4) : 133 - 141
  • [26] Transient solution of an M/M/1 queue with catastrophes
    Kumar, BK
    Arivudainambi, D
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (10-11) : 1233 - 1240
  • [27] Parthasarathy PR., 2004, AM J MATH MANAGE SCI, V51, P1
  • [28] Stirzaker D., 2006, Math. Sci., V31, P107
  • [29] Stirzaker D, 2007, PROBAB ENG INFORM SC, V21, P1
  • [30] Swift R. J., 2001, INT J MATH MATH SCI, V25, P689, DOI DOI 10.1155/S0161171201005762