On two perturbation estimates of the extreme solutions to the equations X ± A*X-1A = Q

被引:50
作者
Hasanov, VI
Ivanov, IG
机构
[1] Shoumen Univ, Fac Math & Informat, Lab Math Modelling, Shumen 9712, Bulgaria
[2] Univ Sofia, Fac Econ & Business Adm, BU-1113 Sofia, Bulgaria
关键词
nonlinear matrix equation; perturbation estimates;
D O I
10.1016/j.laa.2005.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two perturbation estimates for maximal positive definite solutions of equations X+A*X-1 A = Q and X - A*X(-1)A = Q are considered. These estimates are proved in [Hasanov et al., Improved perturbation Estimates for the Matrix Equations X A*X(-1)A = Q,LinearAlgebra Appl. 379 (2004) 113-135]. We derive new perturbation estimates under weaker restrictions on coefficient matrices of the equations. The theoretical results are illustrated by numerical examples. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 92
页数:12
相关论文
共 8 条
[1]   NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A POSITIVE-DEFINITE SOLUTION OF THE MATRIX EQUATION X+A-ASTERISK-X-1A=Q [J].
ENGWERDA, JC ;
RAN, ACM ;
RIJKEBOER, AL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 186 :255-275
[2]   Hermitian solutions of the equation X=Q+NX(-1)N* [J].
Ferrante, A ;
Levy, BC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 247 :359-373
[3]   Iterative solution of two matrix equations [J].
Guo, CH ;
Lancaster, P .
MATHEMATICS OF COMPUTATION, 1999, 68 (228) :1589-1603
[4]   Improved perturbation estimates for the matrix equations X ± A*X-1A = Q [J].
Hasanov, VI ;
Ivanov, IG ;
Uhlig, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 379 :113-135
[5]   Improved methods and starting values to solve the matrix equations X±A*X-1A=I iteratively [J].
Ivanov, IG ;
Hasanov, VI ;
Uhlig, F .
MATHEMATICS OF COMPUTATION, 2005, 74 (249) :263-278
[6]  
Ortega JM., 1970, ITERATIVE SOLUTION N
[7]   Perturbation analysis of the maximal solution of the matrix equation X+A* X-1 A = P.: II [J].
Sun, JG ;
Xu, SF .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 362 :211-228
[8]   Perturbation analysis of the maximal solution of the matrix equation X+A*X-1 A = P [J].
Xu, SF .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 336 (1-3) :61-70