Multi-objective Evolutionary Algorithms Assessment for Pump Scheduling Problems

被引:0
作者
Gutierrez-Bahamondes, Jimmy H. [1 ]
Salgueiro, Yamisleydi [1 ]
Mora-Melia, Daniel [2 ]
Alsina, Marco A. [2 ]
Silva-Rubio, Sergio A. [2 ]
Iglesias-Rey, Pedro L. [3 ]
机构
[1] Univ Talca, Fac Ingn, Dept Ciencias Computac, Campus Curico, Talca, Chile
[2] Univ Talca, Fac Ingn, Dept Ingn & Gest Construcc, Campus Curico, Talca, Chile
[3] Univ Politecn Valencia, Dept Hidraul & Medio Ambiente, Valencia, Spain
来源
2019 IEEE CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (CHILECON) | 2019年
关键词
EPANET; jMetal; Multi-objective Evolutionary Algorithms;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The shortage of drinking water is one of the biggest problems facing humanity today. Solving this problem necessarily involves an optimal use of this resource, starting from the pumping. Determining the water pumping regime to meet the demands of a city is a multi-objective complex problem. One of the steps to solve this problem is assessing which multi-objective optimizer has better performance. In this work, we provide a methodology for the comparison of multi-objective evolutionary algorithms in the water pumping regime optimization problem through the combination of the EPANET and the jMetal framework. Both were validated in the comparison of NSGA-II, SPEA2, and SMPSO to optimize the pumping regime on the water distribution networks Van Zyl, Baghmalek, and Anytown. The quality indicators Spread, Epsilon, and Hypervolume, allow assessing the superiority/competitivity statistically of one method over others in terms of solutions' convergence and distribution. The experimental results show that the combination of EPANET and jMetal provide the ideal environment to perform MOEAs comparisons effectively.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Case-base maintenance with multi-objective evolutionary algorithms [J].
Lupiani, Eduardo ;
Massie, Stewart ;
Craw, Susan ;
Juarez, Jose M. ;
Palma, Jose .
JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2016, 46 (02) :259-284
[22]   Optimization of sensor deployment using multi-objective evolutionary algorithms [J].
Ndam Njoya A. ;
Abdou W. ;
Dipanda A. ;
Tonye E. .
Journal of Reliable Intelligent Environments, 2016, 2 (04) :209-220
[23]   MULTI-OBJECTIVE NETWORK RELIABILITY OPTIMIZATION USING EVOLUTIONARY ALGORITHMS [J].
Aguirre, Oswaldo ;
Villanueva, Delia ;
Taboada, Heidi .
15TH ISSAT INTERNATIONAL CONFERENCE ON RELIABILITY AND QUALITY IN DESIGN, PROCEEDINGS, 2009, :427-431
[24]   Multi-objective Evolutionary Algorithms for Influence Maximization in Social Networks [J].
Bucur, Doina ;
Iacca, Giovanni ;
Marcelli, Andrea ;
Squillero, Giovanni ;
Tonda, Alberto .
APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2017, PT I, 2017, 10199 :221-233
[25]   Result diversification by multi-objective evolutionary algorithms with theoretical guarantees [J].
Qian, Chao ;
Liu, Dan-Xuan ;
Zhou, Zhi-Hua .
ARTIFICIAL INTELLIGENCE, 2022, 309
[26]   Convex hull ranking algorithm for multi-objective evolutionary algorithms [J].
Monfared, M. Davoodi ;
Mohades, A. ;
Rezaei, J. .
SCIENTIA IRANICA, 2011, 18 (06) :1435-1442
[27]   Case-base maintenance with multi-objective evolutionary algorithms [J].
Eduardo Lupiani ;
Stewart Massie ;
Susan Craw ;
Jose M. Juarez ;
Jose Palma .
Journal of Intelligent Information Systems, 2016, 46 :259-284
[28]   A Co-Evolutionary Scheme for Multi-Objective Evolutionary Algorithms Based on ε-Dominance [J].
Menchaca-Mendez, Adriana ;
Montero, Elizabeth ;
Miguel Antonio, Luis ;
Zapotecas-Martinez, Saul ;
Coello Coello, Carlos A. ;
Riff, Maria-Cristina .
IEEE ACCESS, 2019, 7 :18267-18283
[29]   Scheduling for the National Hockey League Using a Multi-objective Evolutionary Algorithm [J].
Craig, Sam ;
While, Lyndon ;
Barone, Luigi .
AI 2009: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5866 :381-390
[30]   EvoFolio: a portfolio optimization method based on multi-objective evolutionary algorithms [J].
Guarino, Alfonso ;
Santoro, Domenico ;
Grilli, Luca ;
Zaccagnino, Rocco ;
Balbi, Mario .
NEURAL COMPUTING & APPLICATIONS, 2024, 36 (13) :7221-7243