Analysis of branched nucleic acid structure using comparative gel electrophoresis

被引:27
作者
Lilley, David M. J. [1 ]
机构
[1] Univ Dundee, Canc Res UK Nucle Acid Struct Res Grp, Dundee DD1 5EH, Scotland
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1017/S0033583508004678
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Electrophoresis in polyacrylamide gels provides a simple yet powerful means of analyzing the relative disposition of helical arms in branched nucleic acids. The electrophoretic mobility of DNA or RNA with a central discontinuity is determined by the angle subtended between the arms radiating from the branchpoint. In a multi-helical branchpoint, comparative gel electrophoresis can provide a relative measure of all the inter-helical angles and thus the shape and symmetry of the molecule. Using the long-short arm approach, the electrophoretic mobility of all the species with two helical arms that are longer than all others is compared. This can be done as a function of conditions, allowing the analysis of ion-dependent folding of branched DNA and RNA species. Notable successes for the technique include the four-way (Holliday) junction in DNA and helical junctions in functionally significant RNA species such as ribozymes. Many of these structures have subsequently been proved correct by crystallography or other methods, up to 10 years later in the case of the Holliday junction, just as important, the technique has riot failed to date. Comparative gel electrophoresis can provide a window on both fast and slow conformational equilibria such as conformer exchange in four-way DNA junctions. But perhaps the biggest test of the approach has been to deduce the structures of complexes of four-way DNA junctions with proteins. Two recent crystallographic structures show that the global structures were correctly deduced by electrophoresis, proving the worth of the method even in these rather complex systems. Comparative gel electrophoresis is a robust method for the analysis of branched nucleic acids and their complexes.
引用
收藏
页码:1 / 39
页数:39
相关论文
共 117 条
[1]   Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories [J].
Aravind, L ;
Makarova, KS ;
Koonin, EV .
NUCLEIC ACIDS RESEARCH, 2000, 28 (18) :3417-3432
[2]   The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution [J].
Ban, N ;
Nissen, P ;
Hansen, J ;
Moore, PB ;
Steitz, TA .
SCIENCE, 2000, 289 (5481) :905-920
[3]   ELECTROPHORESIS OF CHARGED POLYMERS - SIMULATION AND SCALING IN A LATTICE MODEL OF REPTATION [J].
BARKEMA, GT ;
MARKO, JF ;
WIDOM, B .
PHYSICAL REVIEW E, 1994, 49 (06) :5303-5309
[4]   RNA folding and misfolding of the hammerhead ribozyme [J].
Bassi, GS ;
Mollegaard, NE ;
Murchie, AIH ;
Lilley, DMJ .
BIOCHEMISTRY, 1999, 38 (11) :3345-3354
[5]  
Bassi GS, 1996, RNA, V2, P756
[6]   Ion-induced folding of the hammerhead ribozyme: a fluorescence resonance energy transfer study [J].
Bassi, GS ;
Murchie, AIH ;
Walter, F ;
Clegg, RM ;
Lilley, DMJ .
EMBO JOURNAL, 1997, 16 (24) :7481-7489
[7]   IONIC INTERACTIONS AND THE GLOBAL CONFORMATIONS OF THE HAMMERHEAD RIBOZYME [J].
BASSI, GS ;
MOLLEGAARD, NE ;
MURCHIE, AIH ;
VONKITZING, E ;
LILLEY, DMJ .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (01) :45-55
[8]   A SECONDARY-STRUCTURE MODEL FOR THE SELF-CLEAVING REGION OF NEUROSPORA VS RNA [J].
BEATTIE, TL ;
OLIVE, JE ;
COLLINS, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4686-4690
[9]   STRUCTURAL-ANALYSIS OF THE RUVC-HOLLIDAY JUNCTION COMPLEX REVEALS AN UNFOLDED JUNCTION [J].
BENNETT, RJ ;
WEST, SC .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 252 (02) :213-226
[10]   RNA BULGES AND THE HELICAL PERIODICITY OF DOUBLE-STRANDED-RNA [J].
BHATTACHARYYA, A ;
MURCHIE, AIH ;
LILLEY, DMJ .
NATURE, 1990, 343 (6257) :484-487