An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules

被引:31
作者
Alam, Md. Nur [1 ]
Alam, Md. Mahbub [2 ]
机构
[1] Pabna Univ Sci & Technol, Dept Math, Pabna 6600, Bangladesh
[2] Harbin Inst Technol, Shenzhen Grad Sch, Dep Mech Engn & Automat, Shenzhen, Peoples R China
来源
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE | 2017年 / 11卷 / 06期
关键词
Analytical method; Exact solutions; Nonlinear evolution equations (NLEEs) of microtubules; Nonlinear RLC transmission lines; TRAVELING-WAVE SOLUTIONS; (3+1)-DIMENSIONAL MKDV-ZK; TANH-FUNCTION METHOD; TRANSMISSION-LINES; SOLITON; PROPAGATION; GENERATION; MODEL;
D O I
10.1016/j.jtusci.2016.11.004
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, a variety of solitary wave solutions are observed for microtubules (MTs). We approach the problem by treating the solutions as nonlinear RLC transmission lines and then find exact solutions of Nonlinear Evolution Equations (NLEEs) involving parameters of special interest in nanobiosciences and biophysics. We determine hyperbolic, trigonometric, rational and exponential function solutions and obtain soliton-like pulse solutions for these equations. A comparative study against other methods demonstrates the validity of the technique that we developed and demonstrates that our method provides additional solutions. Finally, using suitable parameter values, we plot 2D and 3D graphics of the exact solutions that we observed using our method. (C) 2017 The Author. Production and hosting by Elsevier B. V. on behalf of Taibah University. This is an open access article under the CC BY-NC-ND license
引用
收藏
页码:939 / 948
页数:10
相关论文
共 37 条
[1]   Exact traveling discrete kink-soliton solutions for the discrete nonlinear electrical transmission lines [J].
Abdoulkary, Saidou ;
Mohamadou, Alidou ;
Beda, Tibi .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (09) :3525-3532
[2]   Nonlinear transmission lines for pulse shaping in silicon [J].
Afshari, E ;
Hajimiri, A .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2005, 40 (03) :744-752
[3]  
Alam MN, 2016, ITAL J PURE APPL MAT, P415
[4]   Exact solutions to the foam drainage equation by using the new generalized (G′/G)-expansion method [J].
Alam, Md. Nur .
RESULTS IN PHYSICS, 2015, 5 :168-177
[5]   Exact traveling wave solutions to the (3+1)-dimensional mKdV-ZK and the (2+1)-dimensional Burgers equations via exp(-Phi(eta))-expansion method [J].
Alam, Md. Nur ;
Hafez, M. G. ;
Akbar, M. Ali ;
Harun-Or-Roshid .
ALEXANDRIA ENGINEERING JOURNAL, 2015, 54 (03) :635-644
[6]   General traveling wave solutions of the strain wave equation in microstructured solids via the new approach of generalized (G'/G)-expansion method [J].
Alam, Md. Nur ;
Akbar, Md. Ali ;
Mohyud-Din, Syed Tauseef .
ALEXANDRIA ENGINEERING JOURNAL, 2014, 53 (01) :233-241
[7]  
Alam MN, 2014, PRAMANA-J PHYS, V83, P317, DOI 10.1007/s12043-014-0776-8
[8]  
Alam MN., 2015, J. Sci. Res, V7, P1, DOI [10.3329/jsr.v7i3.17954, DOI 10.3329/JSR.V7I3.17954]
[9]  
ALAM MN, 2015, ADV ANAL, V1, P51, DOI DOI 10.1515/WWFAA-2015-0006
[10]   Microtubules Nonlinear Models Dynamics Investigations through the exp ( - φ ( ξ ) ) -Expansion Method Implementation [J].
Alam, Nur ;
Belgacem, Fethi Bin Muhammad .
MATHEMATICS, 2016, 4 (01)