A Sufficient and Necessary Condition of Uncertain Measure

被引:0
作者
Peng, Zixiong [1 ]
Iwamura, Kakuzo [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Josai Univ, Dept Math, Sakado, Saitama 3500248, Japan
来源
INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL | 2012年 / 15卷 / 04期
基金
中国国家自然科学基金;
关键词
Uncertainty theory; uncertain measure; uncertainty space; EXPECTED VALUE;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Uncertainty theory is a branch of mathematics for modeling human uncertainty based on the normality, duality, subadditivity, and product axioms. This paper gives a relation between set functions and uncertain measures, and proves a sufficient and necessary condition for uncertain measures. Finally, some examples are given.
引用
收藏
页码:1381 / 1391
页数:11
相关论文
共 23 条
[11]  
Liu B., 2015, Uncertainty Theory
[12]  
Liu B., 2006, Fuzzy Optim Decis Making, V5, P387, DOI DOI 10.1007/S10700-006-0016-X
[13]  
Liu B., 2010, Journal of Uncertain Systems, V4, P83
[14]  
Liu B., 2008, J. Uncertain Syst., V2, P3
[15]  
Liu Baoding., 2009, Journal of Uncertain Systems, V3, P243
[16]  
Liu W, 2010, INFORMATION-TOKYO, V13, P1693
[17]  
Liu YH, 2009, SER INF MANAGE SCI, V8, P779
[18]   A sufficient and necessary condition of uncertainty distribution [J].
Peng, Zixiong ;
Iwamura, Kakuzo .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2010, 13 (03) :277-285
[19]  
Sugeno M., 1974, Theory of Fuzzy Integrals and its Applications
[20]  
Wang XS, 2011, INFORMATION-TOKYO, V14, P79