A Sufficient and Necessary Condition of Uncertain Measure

被引:0
作者
Peng, Zixiong [1 ]
Iwamura, Kakuzo [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Josai Univ, Dept Math, Sakado, Saitama 3500248, Japan
来源
INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL | 2012年 / 15卷 / 04期
基金
中国国家自然科学基金;
关键词
Uncertainty theory; uncertain measure; uncertainty space; EXPECTED VALUE;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Uncertainty theory is a branch of mathematics for modeling human uncertainty based on the normality, duality, subadditivity, and product axioms. This paper gives a relation between set functions and uncertain measures, and proves a sufficient and necessary condition for uncertain measures. Finally, some examples are given.
引用
收藏
页码:1381 / 1391
页数:11
相关论文
共 23 条
[1]  
[Anonymous], INT J UNCERTAINTY FU
[2]  
[Anonymous], UNCETAINTY THEORY BR
[3]  
[Anonymous], 2009, J UNCERTAIN SYST
[4]  
[Anonymous], 1988, Possibility Theory
[5]  
[Anonymous], 2009, THEORY PRACTICE UNCE
[6]   Existence and uniqueness theorem for uncertain differential equations [J].
Chen, X. ;
Liu, B. .
FUZZY OPTIMIZATION AND DECISION MAKING, 2010, 9 (01) :69-81
[7]  
Choquet G., 1954, Ann. Institute. Fourier (Grenoble), V5, P131, DOI DOI 10.5802/AIF.53
[8]   ON LIU'S INFERENCE RULE FOR UNCERTAIN SYSTEMS [J].
Gao, Xin ;
Gao, Yuan ;
Ralescu, Dan A. .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2010, 18 (01) :1-11
[9]  
Liu B, 2010, J Uncertain Syst, V4, P163
[10]  
Liu B., 2009, J. Uncertain Syst., V3, P3