Hierarchical composites reinforced with robust short sisal fibre preforms utilising bacterial cellulose as binder

被引:68
作者
Lee, Koon-Yang [1 ]
Ho, Kingsley K. C. [1 ]
Schlufter, Kerstin [2 ]
Bismarck, Alexander [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, Polymer & Composite Engn PaCE Grp, London SW7 2AZ, England
[2] Fzmb GmbH Res Ctr Med Technol & Biotechnol, D-99947 Bad Langensalza, Germany
基金
英国工程与自然科学研究理事会;
关键词
Short-fibre composites; Polymer-matrix composites (PMCs); Fibre/matrix bond; Interface; Bacterial cellulose; NATURAL FIBERS; MECHANICAL-PROPERTIES; FLAX FIBERS; POLYPROPYLENE; KENAF; MAT; TENSILE; LENGTH; WOOD;
D O I
10.1016/j.compscitech.2012.06.014
中图分类号
TB33 [复合材料];
学科分类号
摘要
A novel robust non-woven sisal fibre preform was manufactured using a papermaking process utilising nanosized bacterial cellulose (BC) as binder for the sisal fibres. It was found that BC provides significant mechanical strength to the sisal fibre preforms. This can be attributed to the high stiffness and strength of the BC network. Truly green non-woven fibre preform reinforced hierarchical composites were prepared by infusing the fibre preforms with acrylated epoxidised soybean oil (AESO) using vacuum assisted resin infusion, followed by thermal curing. Both the tensile and flexural properties of the hierarchical composites showed significant improvements over polyAESO and neat sisal fibre preform reinforced polyAESO. These results were corroborated by the thermo-mechanical behaviour of the (hierarchical) composites, which showed an increased storage modulus and enhanced fibre-matrix stress transfer. Micromechanical modelling was also performed on the (hierarchical) composites. By using BC as binder for short sisal fibres, added benefits such as the high Young's modulus of BC, enhanced fibre-fibre and fibre-matrix stress transfer can be utilised in the resulting hierarchical composites. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1479 / 1486
页数:8
相关论文
共 47 条
[1]   Characterisation of fibre/matrix interfacial degradation under cyclic fatigue loading using dynamic mechanical analysis [J].
Afaghi-Khatibi, A ;
Mai, YW .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2002, 33 (11) :1585-1592
[2]   Preparation of Thermoset Composites from Natural Fibres and Acrylate Modified Soybean Oil Resins [J].
Akesson, Dan ;
Skrifvars, Mikael ;
Walkenstrom, Pernilla .
JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 114 (04) :2502-2508
[3]   Synthesis, characterization, and kinetics study of thermal decomposition of epoxidized soybean oil acrylate [J].
Behera, D. ;
Banthia, A. K. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 109 (04) :2583-2590
[4]  
Bismarck A, 2005, NATURAL FIBERS, BIOPOLYMERS, AND BIOCOMPOSITES, P37
[5]   Hierarchical Composites Made Entirely from Renewable Resources [J].
Blaker, Jonny J. ;
Lee, Koon-Yang ;
Bismarck, Alexander .
JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2011, 5 (01) :1-16
[6]   THE ELASTICITY AND STRENGTH OF PAPER AND OTHER FIBROUS MATERIALS [J].
COX, HL .
BRITISH JOURNAL OF APPLIED PHYSICS, 1952, 3 (MAR) :72-79
[7]   Structural investigations of microbial cellulose produced in stationary and agitated culture [J].
Czaja, W ;
Romanovicz, D ;
Brown, RM .
CELLULOSE, 2004, 11 (3-4) :403-411
[8]   Hornification - its origin and interpretation in wood pulps [J].
Diniz, JMBF ;
Gil, MH ;
Castro, JAAM .
WOOD SCIENCE AND TECHNOLOGY, 2004, 37 (06) :489-494
[9]  
Du YC, 2010, FOREST PROD J, V60, P289
[10]   Review: current international research into cellulose nanofibres and nanocomposites [J].
Eichhorn, S. J. ;
Dufresne, A. ;
Aranguren, M. ;
Marcovich, N. E. ;
Capadona, J. R. ;
Rowan, S. J. ;
Weder, C. ;
Thielemans, W. ;
Roman, M. ;
Renneckar, S. ;
Gindl, W. ;
Veigel, S. ;
Keckes, J. ;
Yano, H. ;
Abe, K. ;
Nogi, M. ;
Nakagaito, A. N. ;
Mangalam, A. ;
Simonsen, J. ;
Benight, A. S. ;
Bismarck, A. ;
Berglund, L. A. ;
Peijs, T. .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (01) :1-33