Reduction of Acetate and Lactate Contributed to Enhancement of a Recombinant Protein Production in E. coli BL21

被引:29
作者
Kim, Tae-Su [1 ,2 ]
Jung, Hyung-Moo [3 ]
Kim, Sang-Yong [3 ]
Zhang, Liaoyuan [1 ]
Li, Jinglin [1 ]
Sigdel, Sujan [1 ]
Park, Ji-Hyun [1 ]
Haw, Jung-Rim [2 ]
Lee, Jung-Kul [1 ]
机构
[1] Konkuk Univ, Dept Chem Engn, Seoul 143701, South Korea
[2] Konkuk Univ, Inst SK KU Biomat, Seoul 143701, South Korea
[3] BioNgene Co Ltd, Seoul 110521, South Korea
基金
新加坡国家研究基金会;
关键词
Large-scale bioreactor; maltogenic amylase; metabolically engineered; production; recombinant protein; FED-BATCH CULTURES; ESCHERICHIA-COLI; METABOLIC-RESPONSE; EXPRESSION; PHOSPHOTRANSACETYLASE; IMMOBILIZATION; AMYLASE; DEHYDROGENASE; PROFILES; IMPROVES;
D O I
10.4014/jmb.1503.03023
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Acetate and lactate in growth media are detrimental to the production of Thermus maltogenic amylase (ThMA), a heterologous protein, as well as to the growth of recombinant Escherichia coli. Only 50 mM of acetate or 10 mM of lactate reduced 90% of specific ThMA activity. In this study, mutant E. coli strains blocked in the ackA-pta or ackA-pta and ldh pathways were created, characterized, and assessed for their culture performace in 300 L-scale fermentation. The ackA-pta and ldh double-mutant strain formed significantly less lactate and acetate, and produced a concomitant increase in the excretion of pyruvate (17.8 mM) under anaerobic conditions. The ackA-pta mutant strain accumulated significant acetate but had an approximately 2-fold increase in the formation of lactate. The ackA-pta and ldh double-mutant strain had superior overall performance in large-scale culture under suboptimal conditions, giving 67% higher cell density and 66% higher ThMA activity compared with those of the control strain. The double-mutant strain also achieved a 179% improvement in volumetric ThMA production.
引用
收藏
页码:1093 / 1100
页数:8
相关论文
共 42 条
[1]   Enhanced production of (R)-1,8-propanediol by metabolically engineered Escherichia coli [J].
Altaras, NE ;
Cameron, DC .
BIOTECHNOLOGY PROGRESS, 2000, 16 (06) :940-946
[2]  
Amanullah A., 2004, Handbook of industrial mixing, P1071, DOI DOI 10.1002/0471451452.CH18
[3]   METABOLIC ENGINEERING OF ESCHERICHIA-COLI TO ENHANCE RECOMBINANT PROTEIN-PRODUCTION THROUGH ACETATE REDUCTION [J].
ARISTIDOU, AA ;
SAN, KY ;
BENNETT, GN .
BIOTECHNOLOGY PROGRESS, 1995, 11 (04) :475-478
[4]   IMPROVED EXPRESSION OF HUMAN INTERLEUKIN-2 IN HIGH-CELL-DENSITY FERMENTER CULTURES OF ESCHERICHIA-COLI K-12 BY A PHOSPHOTRANSACETYLASE MUTANT [J].
BAUER, KA ;
BENBASSAT, A ;
DAWSON, M ;
DELAPUENTE, VT ;
NEWAY, JO .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1990, 56 (05) :1296-1302
[5]   Alpha-Amylase Immobilization on Epoxy Containing Thiol-Ene Photocurable Materials [J].
Cakmakci, Emrah ;
Danis, Ozkan ;
Demir, Serap ;
Mulazim, Yusuf ;
Kahraman, Memet Vezir .
JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 23 (02) :205-210
[6]   ORGANIC-ACIDS - CHEMISTRY, ANTIBACTERIAL ACTIVITY AND PRACTICAL APPLICATIONS [J].
CHERRINGTON, CA ;
HINTON, M ;
MEAD, GC ;
CHOPRA, I .
ADVANCES IN MICROBIAL PHYSIOLOGY, 1991, 32 :87-108
[7]   EFFECT OF SHORT-CHAIN ORGANIC-ACIDS ON MACROMOLECULAR-SYNTHESIS IN ESCHERICHIA-COLI [J].
CHERRINGTON, CA ;
HINTON, M ;
CHOPRA, I .
JOURNAL OF APPLIED BACTERIOLOGY, 1990, 68 (01) :69-74
[8]   EFFECT OF MODULATED GLUCOSE-UPTAKE ON HIGH-LEVEL RECOMBINANT PROTEIN-PRODUCTION IN A DENSE ESCHERICHIA-COLI CULTURE [J].
CHOU, CH ;
BENNETT, GN ;
SAN, KY .
BIOTECHNOLOGY PROGRESS, 1994, 10 (06) :644-647
[9]   OVERPRODUCTION OF GLYCOGEN IN ESCHERICHIA-COLI BLOCKED IN THE ACETATE PATHWAY IMPROVES CELL-GROWTH [J].
DEDHIA, NN ;
HOTTIGER, T ;
BAILEY, JE .
BIOTECHNOLOGY AND BIOENGINEERING, 1994, 44 (01) :132-139
[10]   INFLUENCE OF EXPRESSION OF THE PET OPERON ON INTRACELLULAR METABOLIC FLUXES OF ESCHERICHIA-COLI [J].
DIAZRICCI, JC ;
TSU, M ;
BAILEY, JE .
BIOTECHNOLOGY AND BIOENGINEERING, 1992, 39 (01) :59-65