Simple Synthesis of Cobalt Carbonate Hydroxide Hydrate and Reduced Graphene Oxide Hybrid Structure for High-Performance Room Temperature NH3 Sensor

被引:9
|
作者
Wang, Chang [1 ,3 ]
Wang, Huan [1 ]
Zhao, Dan [1 ]
Wei, Xianqi [1 ,4 ]
Li, Xin [1 ,3 ]
Liu, Weihua [1 ,3 ]
Liu, Hongzhong [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Dept Microelect, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
[3] Guangdong Shunde Xian Jiaotong Univ Acad, 3 Deshengdong Rd, Shunde Dist 528300, Foshan, Peoples R China
[4] Xi An Jiao Tong Univ, Res Inst, 328 Wenming Rd, Hangzhou 311215, Zhejiang, Peoples R China
来源
SENSORS | 2019年 / 19卷 / 03期
基金
中国国家自然科学基金;
关键词
gas sensor; cobalt carbonate hydroxide hydrate; reduced graphene oxide; room temperature; ammonia; GAS SENSOR; CO3O4; NANOSTRUCTURES; NANOPARTICLES; MECHANISM; FLOWER; FILM; RGO;
D O I
10.3390/s19030615
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A novel hybrid structure sensor based on cobalt carbonate hydroxide hydrate (CCHH) and reduced graphene oxide (RGO) was designed for room temperature NH3 detection. This hybrid structure consisted of CCHH and RGO (synthesized by a one-step hydrothermal method), in which RGO uniformly dispersed in CCHH, being used as the gas sensing film. The resistivity of the hybrid structure was highly sensitive to the changes on NH3 concentration. CCHH in the hybrid structure was the sensing material and RGO was the conductive channel material. The hybrid structure could improve signal-to-noise ratio (SNR) and the sensitivity by obtaining the optimal mass proportion of RGO, since the proportion of RGO was directly related to sensitivity. The gas sensor with 0.4 wt% RGO showed the highest gas sensing response reach to 9% to 1 ppm NH3. Compared to a conventional gas sensor, the proposed sensor not only showed high gas sensing response at room temperature but also was easy to achieve large-scale production due to the good stability and simple synthesis process.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] High-performance room temperature gas sensor based on gold(III) pincer complex with high sensitivity for NH3
    Tabrizi, Leila
    Chiniforoshan, Hossein
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 245 : 815 - 820
  • [12] Room temperature NO2 gas sensor based on porous Co3O4 slices/reduced graphene oxide hybrid
    Zhang, Bo
    Cheng, Ming
    Liu, Guannan
    Gao, Yuan
    Zhao, Lianjing
    Li, Shan
    Wang, Yipei
    Liu, Fangmeng
    Liang, Xishuang
    Zhang, Tong
    Lu, Geyu
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 263 : 387 - 399
  • [13] Reduced graphene oxide-CuFe2O4 nanocomposite: A highly sensitive room temperature NH3 gas sensor
    Achary, L. Satish K.
    Kumar, Aniket
    Barik, Bapun
    Nayak, Pratap S.
    Tripathy, Nilakantha
    Kar, Jyoti P.
    Dash, Priyabrat
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 272 : 100 - 109
  • [14] Reduced graphene oxide/ZnO hybrid structure for high-performance photodetection
    S. Darbari
    V. Ahmadi
    P. Afzali
    Y. Abdi
    M. Feda
    Journal of Nanoparticle Research, 2014, 16
  • [15] High-Performance Room Temperature Methane Gas Sensor Based on Lead Sulfide/Reduced Graphene Oxide Nanocomposite
    Roshan, Hossein
    Sheikhi, Mohammad Hossein
    Haghighi, Mohammad Kazem Faramarzi
    Padidar, Poormehr
    IEEE SENSORS JOURNAL, 2020, 20 (05) : 2526 - 2532
  • [16] Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide
    Hu, Nantao
    Yang, Zhi
    Wang, Yanyan
    Zhang, Liling
    Wang, Ying
    Huang, Xiaolu
    Wei, Hao
    Wei, Liangmin
    Zhang, Yafei
    NANOTECHNOLOGY, 2014, 25 (02)
  • [17] Mo2C/MoO3@rGO Ternary Nanocomposites as High-Performance Gas Sensor for Trace NH3 Detection at Room Temperature
    Liu, Jiahui
    Lu, Xiaorui
    Han, Guowei
    Si, Chaowei
    Zhao, Yongmei
    Hou, Zhongxuan
    Zhang, Yongkang
    Ning, Jin
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (09) : 5061 - 5073
  • [18] Room-temperature NH3 gas sensor based on atomically dispersed Co with a simple structure
    Tian, Renbing
    Ji, Peng
    Luo, Zhichao
    Li, Jiaming
    Sun, Jinghua
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (23) : 10240 - 10247
  • [19] Porous reduced graphene oxide ( rGO)/ WO3 nanocomposites for the enhanced detection of NH3 at room temperature
    Jeevitha, G.
    Abhinayaa, R.
    Mangalaraj, D.
    Ponpandian, N.
    Meena, P.
    Mounasamy, Veena
    Madanagurusamy, Sridharan
    NANOSCALE ADVANCES, 2019, 1 (05): : 1799 - 1811
  • [20] Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite
    Zhang, Dongzhi
    Liu, Aiming
    Chang, Hongyan
    Xia, Bokai
    RSC ADVANCES, 2015, 5 (04) : 3016 - 3022