Tame and wild projective curves and classification of vector bundles

被引:51
作者
Drozd, YA [1 ]
Greuel, GM
机构
[1] Kyiv Taras Shevchenko Univ, Dept Mech & Math, UA-01033 Kiev, Ukraine
[2] Univ Kaiserslautern, Fac Math, D-67663 Kaiserslautern, Germany
关键词
D O I
10.1006/jabr.2001.8934
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a new method of classifying vector bundles on projective curves, especially singular ones, according to their "representation type." In particular, we prove that the classification problem of vector bundles, respectively of torsion-free sheaves, on projective curves is always finite, tame, or wild. We completely classify curves which are of finite, respectively tame, vector bundle type by their dual graph. Moreover, our methods yield a geometric description of all indecomposable vector bundles and torsion-free sheaves on finite and tame curves. (C) 2001 Elsevier Science.
引用
收藏
页码:1 / 54
页数:54
相关论文
共 40 条
[1]   ITERATED TILTED ALGEBRAS OF TYPE AN [J].
ASSEM, I ;
SKOWRONSKI, A .
MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (02) :269-290
[2]  
Atiyah M. F., 1957, Proceedings of the London Mathematical Society, V7, P414, DOI 10.1112/plms/s3-7.1.414
[3]   ALMOST SPLIT-SEQUENCES IN DIMENSION-2 [J].
AUSLANDER, M ;
REITEN, I .
ADVANCES IN MATHEMATICS, 1987, 66 (01) :88-118
[4]   REPRESENTATION-FINITE ALGEBRAS AND MULTIPLICATIVE BASES [J].
BAUTISTA, R ;
GABRIEL, P ;
ROITER, AV ;
SALMERON, L .
INVENTIONES MATHEMATICAE, 1985, 81 (02) :217-285
[5]  
BEKKERT VI, IN PRESS ALGEBRAS RE
[6]  
Bondarenko V.M., 1992, ST PETERSB MATH J, V3, P973
[7]   AUSLANDER-REITEN SEQUENCES WITH FEW MIDDLE TERMS AND APPLICATIONS TO STRING ALGEBRAS [J].
BUTLER, MCR ;
RINGEL, CM .
COMMUNICATIONS IN ALGEBRA, 1987, 15 (1-2) :145-179
[8]  
COHN PM, 1985, FREE ALGEBRAS THEIR
[9]  
CRAWLEYBOEVEY W, 1989, J LOND MATH SOC, V1, P9
[10]  
Donovan P., 1973, CARLETON LECT NOTES, V5