New Convergence Properties of the Primal Augmented Lagrangian Method

被引:0
作者
Zhou, Jinchuan [1 ]
Zhu, Xunzhi [1 ]
Pan, Lili [1 ]
Zhao, Wenling [1 ]
机构
[1] Shandong Univ Technol, Sch Sci, Dept Math, Zibo 255049, Peoples R China
基金
中国国家自然科学基金;
关键词
OPTIMIZATION; ALGORITHM; DUALITY;
D O I
10.1155/2011/902131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New convergence properties of the proximal augmented Lagrangian method is established for continuous nonconvex optimization problem with both equality and inequality constrains. In particular, the multiplier sequences are not required to be bounded. Different convergence results are discussed dependent on whether the iterative sequence {x(k)} generated by algorithm is convergent or divergent. Furthermore, under certain convexity assumption, we show that every accumulation point of {x(k)} is either a degenerate point or a KKT point of the primal problem. Numerical experiments are presented finally.
引用
收藏
页数:14
相关论文
共 14 条
[1]   ON AUGMENTED LAGRANGIAN METHODS WITH GENERAL LOWER-LEVEL CONSTRAINTS [J].
Andreani, R. ;
Birgin, E. G. ;
Martinez, J. M. ;
Schuverdt, M. L. .
SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) :1286-1309
[2]  
[Anonymous], 1969, OPTIMIZATION
[3]   Global minimization using an Augmented Lagrangian method with variable lower-level constraints [J].
Birgin, E. G. ;
Floudas, C. A. ;
Martinez, J. M. .
MATHEMATICAL PROGRAMMING, 2010, 125 (01) :139-162
[4]   Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems [J].
Birgin, EG ;
Castillo, RA ;
Martínez, JM .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 31 (01) :31-55
[5]   The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems [J].
Birgin, Ernesto G. ;
Fernandez, Damian ;
Martinez, J. M. .
OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (06) :1001-1024
[6]   Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization [J].
Birgin, Ernesto G. ;
Martinez, J. M. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 51 (03) :941-965
[7]   Convergence properties of an augmented Lagrangian algorithm for optimization with a combination of general equality and linear constraints [J].
Conn, AR ;
Gould, N ;
Sartenaer, A ;
Toint, PL .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (03) :674-703
[8]   Augmented Lagrangian duality and nondifferentiable optimization methods in nonconvex programming [J].
Gasimov, RN .
JOURNAL OF GLOBAL OPTIMIZATION, 2002, 24 (02) :187-203
[9]  
Hestenes M. R., 1969, Journal of Optimization Theory and Applications, V4, P303, DOI 10.1007/BF00927673
[10]   A unified augmented Lagrangian approach to duality and exact penalization [J].
Huang, XX ;
Yang, XQ .
MATHEMATICS OF OPERATIONS RESEARCH, 2003, 28 (03) :533-552