Nonequilibrium phase transitions and violent relaxation in the Hamiltonian mean-field model

被引:20
作者
Rocha Filho, T. M. [1 ]
Amato, M. A.
Figueiredo, A.
机构
[1] Univ Brasilia, Inst Fis, BR-70919970 Brasilia, DF, Brazil
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 06期
关键词
QUASI-STATIONARY STATES; STATISTICAL-MECHANICS;
D O I
10.1103/PhysRevE.85.062103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss the nature of nonequilibrium phase transitions in the Hamiltonian mean-field model using detailed numerical simulations of the Vlasov equation and molecular dynamics. Starting from fixed magnetization water bag initial distributions and varying the energy, the states obtained after a violent relaxation undergo a phase transition from magnetized to nonmagnetized states when going from lower to higher energies. The phase transitions are either first order or are composed of a cascade of phase reentrances. This result is at variance with most previous results in the literature mainly based on the Lynden-Bell theory of violent relaxation. The latter is a rough approximation and, consequently, is not suited for an accurate description of nonequilibrium phase transition in long-range interacting systems.
引用
收藏
页数:5
相关论文
共 50 条
[21]   Lyapunov exponent and criticality in the Hamiltonian mean field model [J].
Miranda Filho, L. H. ;
Amato, M. A. ;
Rocha Filho, T. M. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
[22]   Mean-field theory of superradiant phase transition in complex networks [J].
Bazhenov, Andrei Yu ;
Tsarev, Dmitriy, V ;
Alodjants, Alexander P. .
PHYSICAL REVIEW E, 2021, 103 (06)
[23]   The Non-effect of Polymer-Network Inhomogeneities in Microgel Volume Phase Transitions: Support for the Mean-Field Perspective [J].
Habicht, Axel ;
Schmolke, Willi ;
Lange, Frank ;
Saalwaechter, Kay ;
Seiffert, Sebastian .
MACROMOLECULAR CHEMISTRY AND PHYSICS, 2014, 215 (11) :1116-1133
[24]   Nonequilibrium stationary state of a truncated stochastic nonlinear Schrodinger equation: Formulation and mean-field approximation [J].
Mounaix, Philippe ;
Collet, Pierre ;
Lebowitz, Joel L. .
PHYSICAL REVIEW E, 2010, 81 (03)
[25]   Two Populations Mean-Field Monomer-Dimer Model [J].
Alberici, Diego ;
Mingione, Emanuele .
JOURNAL OF STATISTICAL PHYSICS, 2018, 171 (01) :96-105
[26]   Mass segregation phenomena using the Hamiltonian Mean Field model [J].
Steiner, J. R. ;
Zolacir, T. O., Jr. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 491 :964-971
[27]   Hamiltonian mean field model: Effect of network structure on synchronization dynamics [J].
Virkar, Yogesh S. ;
Restrepo, Juan G. ;
Meiss, James D. .
PHYSICAL REVIEW E, 2015, 92 (05)
[28]   Some statistical equilibrium mechanics and stability properties of a class of two-dimensional Hamiltonian mean-field models [J].
Maciel, J. M. ;
Firpo, M. -C. ;
Amato, M. A. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 424 :34-43
[29]   Mean-field theory of an asset exchange model with economic growth and wealth distribution [J].
Klein, W. ;
Lubbers, N. ;
Liu, Kang K. L. ;
Khouw, T. ;
Gould, Harvey .
PHYSICAL REVIEW E, 2021, 104 (01)
[30]   Energy localisation and dynamics of a mean-field model with non-linear dispersion [J].
Christodoulidi, H. ;
Antonopoulos, Ch. G. .
PHYSICA D-NONLINEAR PHENOMENA, 2025, 471