Nonequilibrium phase transitions and violent relaxation in the Hamiltonian mean-field model

被引:20
|
作者
Rocha Filho, T. M. [1 ]
Amato, M. A.
Figueiredo, A.
机构
[1] Univ Brasilia, Inst Fis, BR-70919970 Brasilia, DF, Brazil
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 06期
关键词
QUASI-STATIONARY STATES; STATISTICAL-MECHANICS;
D O I
10.1103/PhysRevE.85.062103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss the nature of nonequilibrium phase transitions in the Hamiltonian mean-field model using detailed numerical simulations of the Vlasov equation and molecular dynamics. Starting from fixed magnetization water bag initial distributions and varying the energy, the states obtained after a violent relaxation undergo a phase transition from magnetized to nonmagnetized states when going from lower to higher energies. The phase transitions are either first order or are composed of a cascade of phase reentrances. This result is at variance with most previous results in the literature mainly based on the Lynden-Bell theory of violent relaxation. The latter is a rough approximation and, consequently, is not suited for an accurate description of nonequilibrium phase transition in long-range interacting systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Nonequilibrium mean-field theory of resistive phase transitions
    Han, Jong E.
    Li, Jiajun
    Aron, Camille
    Kotliar, Gabriel
    PHYSICAL REVIEW B, 2018, 98 (03)
  • [2] Glassy phase in the Hamiltonian mean-field model
    Pluchino, A
    Latora, V
    Rapisarda, A
    PHYSICAL REVIEW E, 2004, 69 (05): : 4
  • [3] Dynamics and nonequilibrium states in the Hamiltonian mean-field model: A closer look
    Zanette, DH
    Montemurro, MA
    PHYSICAL REVIEW E, 2003, 67 (03):
  • [4] Out-of-equilibrium phase transitions in the Hamiltonian mean-field model: A closer look
    Staniscia, F.
    Chavanis, P. H.
    De Ninno, G.
    PHYSICAL REVIEW E, 2011, 83 (05):
  • [5] Critical exponent for the Lyapunov exponent and phase transitions-the generalized Hamiltonian mean-field model
    Silva Jr, M. F. P.
    Rocha Filho, T. M.
    Elskens, Y.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (21)
  • [6] Phase transitions of the mean-field Potts glass model in a field
    Yokota, T
    PHYSICAL REVIEW B, 2004, 70 (17): : 1 - 14
  • [7] Collisional relaxation in the inhomogeneous Hamiltonian mean-field model: Diffusion coefficients
    Benetti, F. P. C.
    Marcos, B.
    PHYSICAL REVIEW E, 2017, 95 (02)
  • [8] Violent relaxation in the Hamiltonian mean field model: II. Non-equilibrium phase diagrams
    Santini, Alessandro
    Giachetti, Guido
    Casetti, Lapo
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (01):
  • [9] Chaos in the Hamiltonian mean-field model
    Ginelli, Francesco
    Takeuchi, Kazumasa A.
    Chate, Hugues
    Politi, Antonio
    Torcini, Alessandro
    PHYSICAL REVIEW E, 2011, 84 (06)
  • [10] Phase transitions of quasistationary states in the Hamiltonian Mean Field model
    de Buyl, Pierre
    Fanelli, Duccio
    Ruffo, Stefano
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2012, 10 (03): : 652 - 659