"Solvent/non-solvent" treatment as a method for non-covalent immobilization of gelatin on the surface of poly(L-lactic acid) electrospun scaffolds

被引:10
作者
Goreninskii, S. I. [1 ,2 ]
Guliaev, R. O. [1 ]
Stankevich, K. S. [1 ,2 ]
Danilenko, N. V. [1 ]
Bolbasov, E. N. [2 ]
Golovkin, A. S. [3 ]
Mishanin, A. I. [3 ]
Filimonov, V. D. [1 ]
Tverdokhlebov, S. I. [2 ]
机构
[1] Tomsk Polytech Univ, Natl Res, NM Kizhner Res & Educ Ctr, Tomsk, Russia
[2] Tomsk Polytech Univ, Natl Res, BP Veinberg Res & Educ Ctr, Tomsk, Russia
[3] Almazov Natl Med Res Ctr, St Petersburg, Russia
关键词
Polylactic add; Gelatin; Electrospun scaffolds; Surface modification; STEM-CELLS; DIFFERENTIATION; NANOFIBERS; FIBERS;
D O I
10.1016/j.colsurfb.2019.01.060
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In the present study, we report a simple and efficient method of gelatin immobilization on the surface of PLA electrospun fibers using pre-treatment with a mixture of toluene and ethanol allowing to form swelled surface layer followed by gelatin adsorption from its solution in PBS. Our results demonstrate that gelatin immobilization leads to a decrease in the water contact angle from 120 degrees to 0 degrees, enhances scaffold strength up to 50%, and doubles the number of adhered cells and their average area. We observed that the maximum amount of gelatin (0.07 +/- 0.01 mg per cm(3) of the scaffold) was immobilized during the first five minutes of exposure to the gelatin solution. Modified scaffolds demonstrated increased strength.
引用
收藏
页码:137 / 140
页数:4
相关论文
共 19 条
[1]   Current advances in electrospun gelatin-based scaffolds for tissue engineering applications [J].
Aldana, Ana A. ;
Abraham, Gustavo A. .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2017, 523 (02) :441-453
[2]   Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold [J].
Binan, Loic ;
Tendey, Charlene ;
De Crescenzo, Gregory ;
El Ayoubi, Rouwayda ;
Ajji, Abdellah ;
Jolicoeur, Mario .
BIOMATERIALS, 2014, 35 (02) :664-674
[3]   Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering [J].
Chen, Jyh-Ping ;
Su, Chien-Hao .
ACTA BIOMATERIALIA, 2011, 7 (01) :234-243
[4]   Functional polymer surfaces for controlling cell behaviors [J].
Chen, Lina ;
Yan, Casey ;
Zheng, Zijian .
MATERIALS TODAY, 2018, 21 (01) :38-59
[5]   Superabsorbent 3D Scaffold Based on Electrospun Nanofibers for Cartilage Tissue Engineering [J].
Chen, Weiming ;
Chen, Shuai ;
Morsi, Yosry ;
El-Hamshary, Hany ;
El-Newehy, Mohamed ;
Fan, Cunyi ;
Mo, Xiumei .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (37) :24415-24425
[6]   In Situ Growth Kinetics of Hydroxyapatite on Electrospun Poly(DL-lactide) Fibers with Gelatin Grafted [J].
Cui, Wenguo ;
Li, Xiaohong ;
Chen, Jiangang ;
Zhou, Shaobing ;
Weng, Jie .
CRYSTAL GROWTH & DESIGN, 2008, 8 (12) :4576-4582
[7]   PLLA scaffolds surface-engineered via poly (propylene imine) dendrimers for improvement on its biocompatibility/controlled pH biodegradability [J].
Ganjalinia, Atiyeah. ;
Akbari, Somaye. ;
Solouk, Atefeh. .
APPLIED SURFACE SCIENCE, 2017, 394 :446-456
[8]   A first method for preparation of biodegradable fibrous scaffolds containing iodine on the fibre surfaces [J].
Goreninskii, Semen I. ;
Stankevich, Ksenia S. ;
Nemoykina, Anna L. ;
Bolbasov, Evgeny N. ;
Tverdokhlebov, Sergei I. ;
Filimonov, Victor D. .
BULLETIN OF MATERIALS SCIENCE, 2018, 41 (04)
[9]   Electrospinning of gelatin and gelatin/poly(L-lactide) blend and its characteristics for wound dressing [J].
Gu, Shu-Ying ;
Wang, Zhi-Mei ;
Ren, Jie ;
Zhang, Chun-Yan .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2009, 29 (06) :1822-1828
[10]   Modification of poly(L-lactic acid) electrospun fibers and films with poly(propylene imine) dendrimer [J].
Khaliliazar, Sh. ;
Akbari, S. ;
Kish, M. H. .
APPLIED SURFACE SCIENCE, 2016, 363 :593-603