"Solvent/non-solvent" treatment as a method for non-covalent immobilization of gelatin on the surface of poly(L-lactic acid) electrospun scaffolds

被引:10
作者
Goreninskii, S. I. [1 ,2 ]
Guliaev, R. O. [1 ]
Stankevich, K. S. [1 ,2 ]
Danilenko, N. V. [1 ]
Bolbasov, E. N. [2 ]
Golovkin, A. S. [3 ]
Mishanin, A. I. [3 ]
Filimonov, V. D. [1 ]
Tverdokhlebov, S. I. [2 ]
机构
[1] Tomsk Polytech Univ, Natl Res, NM Kizhner Res & Educ Ctr, Tomsk, Russia
[2] Tomsk Polytech Univ, Natl Res, BP Veinberg Res & Educ Ctr, Tomsk, Russia
[3] Almazov Natl Med Res Ctr, St Petersburg, Russia
关键词
Polylactic add; Gelatin; Electrospun scaffolds; Surface modification; STEM-CELLS; DIFFERENTIATION; NANOFIBERS; FIBERS;
D O I
10.1016/j.colsurfb.2019.01.060
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In the present study, we report a simple and efficient method of gelatin immobilization on the surface of PLA electrospun fibers using pre-treatment with a mixture of toluene and ethanol allowing to form swelled surface layer followed by gelatin adsorption from its solution in PBS. Our results demonstrate that gelatin immobilization leads to a decrease in the water contact angle from 120 degrees to 0 degrees, enhances scaffold strength up to 50%, and doubles the number of adhered cells and their average area. We observed that the maximum amount of gelatin (0.07 +/- 0.01 mg per cm(3) of the scaffold) was immobilized during the first five minutes of exposure to the gelatin solution. Modified scaffolds demonstrated increased strength.
引用
收藏
页码:137 / 140
页数:4
相关论文
共 19 条
  • [1] Current advances in electrospun gelatin-based scaffolds for tissue engineering applications
    Aldana, Ana A.
    Abraham, Gustavo A.
    [J]. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2017, 523 (02) : 441 - 453
  • [2] Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold
    Binan, Loic
    Tendey, Charlene
    De Crescenzo, Gregory
    El Ayoubi, Rouwayda
    Ajji, Abdellah
    Jolicoeur, Mario
    [J]. BIOMATERIALS, 2014, 35 (02) : 664 - 674
  • [3] Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering
    Chen, Jyh-Ping
    Su, Chien-Hao
    [J]. ACTA BIOMATERIALIA, 2011, 7 (01) : 234 - 243
  • [4] Functional polymer surfaces for controlling cell behaviors
    Chen, Lina
    Yan, Casey
    Zheng, Zijian
    [J]. MATERIALS TODAY, 2018, 21 (01) : 38 - 59
  • [5] Superabsorbent 3D Scaffold Based on Electrospun Nanofibers for Cartilage Tissue Engineering
    Chen, Weiming
    Chen, Shuai
    Morsi, Yosry
    El-Hamshary, Hany
    El-Newehy, Mohamed
    Fan, Cunyi
    Mo, Xiumei
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (37) : 24415 - 24425
  • [6] In Situ Growth Kinetics of Hydroxyapatite on Electrospun Poly(DL-lactide) Fibers with Gelatin Grafted
    Cui, Wenguo
    Li, Xiaohong
    Chen, Jiangang
    Zhou, Shaobing
    Weng, Jie
    [J]. CRYSTAL GROWTH & DESIGN, 2008, 8 (12) : 4576 - 4582
  • [7] PLLA scaffolds surface-engineered via poly (propylene imine) dendrimers for improvement on its biocompatibility/controlled pH biodegradability
    Ganjalinia, Atiyeah.
    Akbari, Somaye.
    Solouk, Atefeh.
    [J]. APPLIED SURFACE SCIENCE, 2017, 394 : 446 - 456
  • [8] A first method for preparation of biodegradable fibrous scaffolds containing iodine on the fibre surfaces
    Goreninskii, Semen I.
    Stankevich, Ksenia S.
    Nemoykina, Anna L.
    Bolbasov, Evgeny N.
    Tverdokhlebov, Sergei I.
    Filimonov, Victor D.
    [J]. BULLETIN OF MATERIALS SCIENCE, 2018, 41 (04)
  • [9] Electrospinning of gelatin and gelatin/poly(L-lactide) blend and its characteristics for wound dressing
    Gu, Shu-Ying
    Wang, Zhi-Mei
    Ren, Jie
    Zhang, Chun-Yan
    [J]. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2009, 29 (06): : 1822 - 1828
  • [10] Modification of poly(L-lactic acid) electrospun fibers and films with poly(propylene imine) dendrimer
    Khaliliazar, Sh.
    Akbari, S.
    Kish, M. H.
    [J]. APPLIED SURFACE SCIENCE, 2016, 363 : 593 - 603