Scattering theory and discrete-time quantum walks

被引:39
作者
Feldman, E
Hillery, M
机构
[1] CUNY Hunter Coll, Dept Phys, New York, NY 10021 USA
[2] CUNY, Grad Ctr, Dept Math, New York, NY 10016 USA
基金
美国国家科学基金会;
关键词
quantum walks;
D O I
10.1016/j.physleta.2004.03.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study quantum walks on general graphs front the point of view of scattering theory. For a general finite graph we choose two vertices and attach one half line to each, and consider walks that proceed front one half line, through the graph, to the other. The probability of starting on one line and reaching the other after n steps can be expressed in terms of the transmission amplitude for the graph. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:277 / 281
页数:5
相关论文
共 21 条
  • [1] AMBAINIS A, QUANTPH0402107
  • [2] AMBAINIS A, QUANTPH0311001
  • [3] Bollob┬u├s B., 2013, MODERN GRAPH THEORY, V184
  • [4] Optical Galton board
    Bouwmeester, D
    Marzoli, I
    Karman, GP
    Schleich, W
    Woerdman, JP
    [J]. PHYSICAL REVIEW A, 2000, 61 (01): : 9
  • [5] Childs A. M., 2003, P 35 ANN ACM S THEOR, P59, DOI DOI 10.1145/780542.780552
  • [6] CHILDS AM, QUANTPH0306054
  • [7] CHILDS AM, QUANTPH0311038
  • [8] Quantum walks in optical lattices -: art. no. 052319
    Dür, W
    Raussendorf, R
    Kendon, VM
    Briegel, HJ
    [J]. PHYSICAL REVIEW A, 2002, 66 (05): : 8
  • [9] Quantum computation and decision trees
    Farhi, E
    Gutmann, S
    [J]. PHYSICAL REVIEW A, 1998, 58 (02): : 915 - 928
  • [10] FELDMAN E, UNPUB