Highly Conductive and Environmentally Stable Organic Transparent Electrodes Laminated with Graphene

被引:23
作者
Chu, Jae Hwan [1 ,2 ]
Lee, Do Hee [1 ,2 ]
Jo, Junhyeon [1 ,2 ]
Kim, Sung Youb [1 ,2 ,3 ]
Yoo, Jung-Woo [1 ,2 ]
Kwon, Soon-Yong [1 ,2 ]
机构
[1] UNIST, Sch Mat Sci & Engn, Ulsan 44919, South Korea
[2] UNIST, Low Dimens Carbon Mat Ctr, Ulsan 44919, South Korea
[3] UNIST, Sch Mech & Nucl Engn, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
POLYMER SOLAR-CELLS; FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; PREDICT THERMAL LIFE; THERMOGRAVIMETRIC ANALYSIS; PEDOT-PSS; ELECTROCHEMICAL TRANSISTORS; SEMICONDUCTING POLYMERS; HIGH-MOBILITY; ENHANCEMENT;
D O I
10.1002/adfm.201602125
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Improving the lifetime and the operational and thermal stability of organic thin-film materials while maintaining high conductivity and mechanical flexibility is critical for flexible electronics applications. Here, it is reported that highly conductive and environmentally stable organic transparent electrodes (TEs) can be fabricated by mechanically laminating poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films containing dimethylsulfoxide and Zonyl fluorosurfactant (PDZ films) with a monolayer graphene barrier. The proposed lamination process allows graphene to be coated onto the PDZ films uniformly and conformally with tight interfacial binding, free of wrinkles and air gaps. The laminated films exhibit an outstanding room-temperature hole mobility of approximate to 85.1 cm(2) V-1 s(-1) since the graphene can serve as an effective bypass for charge carriers. The significantly improved stability of the graphene-laminated TEs against high mechanical/thermal stress, humidity, and ultraviolet irradiation is particularly promising. Furthermore, the incorporation of the graphene barrier increases the expected lifetime of the TEs by more than two orders of magnitude.
引用
收藏
页码:7234 / 7243
页数:10
相关论文
共 69 条
[1]   Materials and Applications for Large Area Electronics: Solution-Based Approaches [J].
Arias, Ana Claudia ;
MacKenzie, J. Devin ;
McCulloch, Iain ;
Rivnay, Jonathan ;
Salleo, Alberto .
CHEMICAL REVIEWS, 2010, 110 (01) :3-24
[2]   Effects of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) [J].
Ashizawa, S ;
Horikawa, R ;
Okuzaki, H .
SYNTHETIC METALS, 2005, 153 (1-3) :5-8
[3]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[4]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[5]   Steady-state and transient behavior of organic electrochemical transistors [J].
Bernards, Daniel A. ;
Malliaras, George G. .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (17) :3538-3544
[6]  
Betancur R, 2013, NAT PHOTONICS, V7, P995, DOI [10.1038/NPHOTON.2013.276, 10.1038/nphoton.2013.276]
[7]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[8]   Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: Evidence for the role of defect sites in carbon nanotube chemistry [J].
Bom, D ;
Andrews, R ;
Jacques, D ;
Anthony, J ;
Chen, BL ;
Meier, MS ;
Selegue, JP .
NANO LETTERS, 2002, 2 (06) :615-619
[10]   Monolithic graphene oxide sheets with controllable composition [J].
Chu, Jae Hwan ;
Kwak, Jinsung ;
Kim, Sung-Dae ;
Lee, Mi Jin ;
Kim, Jong Jin ;
Park, Soon-Dong ;
Choi, Jae-Kyung ;
Ryu, Gyeong Hee ;
Park, Kibog ;
Kim, Sung Youb ;
Kim, Ji Hyun ;
Lee, Zonghoon ;
Kim, Young-Woon ;
Kwon, Soon-Yong .
NATURE COMMUNICATIONS, 2014, 5