共 50 条
ATOMISTIC SCALE THERMAL TRANSPORT IN AMORPHOUS MATERIALS AND ITS INTERFACES
被引:0
作者:
Roy, Ajit K.
[1
]
Varshney, V.
[1
]
Ganguli, S.
[1
]
Sihn, S.
[1
]
Lee, J.
[1
]
Farmer, B.
[1
]
机构:
[1] USAF, Res Lab, Mat & Mfg Directorate, Thermal Sci & Mat Branch AFRL RXBT, Wright Patterson AFB, OH 45433 USA
来源:
PROCEEDINGS OF THE ASME/JSME 8TH THERMAL ENGINEERING JOINT CONFERENCE 2011, VOL 3
|
2011年
关键词:
Thermal materials;
Thermal interface;
Multiscale modeling;
Composite materials;
Bonded joints;
COMPOSITES;
MANAGEMENT;
D O I:
暂无
中图分类号:
TH [机械、仪表工业];
学科分类号:
0802 ;
摘要:
The thermal loads (excess heat) in all DoD systems (aircrafts and spacecrafts) have steadily been increasing at an alarming rate. The current practice is use fuel as the heat sink to dump the excess heat. This operational approach currently is not adequate to sufficiently cool the electronics and thermal devices, and thus limiting the system performance and its system readiness. Amorphous materials system (polymers, adhesive, etc), which is known to be thermally non-conductive material, is prevalent in almost all DoD systems. So, there is a big incentive in tailoring its thermal transport characteristics to meet the system requirements. Advent of the conductive nano material constituents (such as, carbon nanotubes, graphite platelets, graphene, etc.) and its adaptation in polymers provides us such opportunity. The success of adapting the nano constituents in polymers in providing the conductive pathways through the polymer phase solely lies on the extent how the interface thermal transport characteristics are tailoring between the polymer and nano constituent interfaces. In order to understand the thermal transport phenomena is amorphous materials and to design its interface consistent to the nano constituent morphology. scale, computational methodology using atomistic molecular dynamics (MD) is developed. Examples for tailoring thermal interface of nano constituents with polymer will be presented.
引用
收藏
页码:441 / 444
页数:4
相关论文
共 50 条