Calendula officinalis-mediated biosynthesis of Silver Nanoparticles and their Electrochemical and Optical Characterization

被引:18
作者
El-Kemary, Maged [1 ]
Ibrahim, Eslam [2 ]
A-Ajmi, Mohammad F. [3 ]
Khalifa, Shaden A. M. [4 ,5 ]
Alanazi, A. D. [6 ]
El-Seedi, Hesham R. [2 ,7 ,8 ]
机构
[1] Kafrelsheikh Univ, Div Photo & Nanochem, Dept Chem, Fac Sci, Kafr Al Sheikh 33516, Egypt
[2] Menoufia Univ, Dept Chem, Fac Sci, Shibin Al Kawm 32512, Egypt
[3] King Saud Univ, Dept Pharmacognosy, Coll Pharm, POB 2457, Riyadh 11451, Saudi Arabia
[4] Karolinska Univ Hosp, Dept Expt Hematol, SE-14186 Stockholm, Sweden
[5] Stockholm Univ, Dept Mol Biosci, Wenner Gren Inst, SE-10691 Stockholm, Sweden
[6] Shaqra Univ, Coll Appl Med Sci, KSA, POB 1678, Aldawadmi 11911, Saudi Arabia
[7] Uppsala Univ, Div Pharmacognosy, Dept Med Chem, Box 574, SE-75123 Uppsala, Sweden
[8] Univ Malaya, Dept Chem, Fac Sci, Kuala Lumpur 50603, Malaysia
来源
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE | 2016年 / 11卷 / 12期
关键词
silver nanoparticles (AgNPs); biosynthesis; Calendula officinalis extract; METAL NANOPARTICLES; EXTRACELLULAR BIOSYNTHESIS; LEAF EXTRACT; GOLD; REDUCTION; SIZE; PHYTOSYNTHESIS; ANTIBACTERIAL; ELECTRODE; BACTERIA;
D O I
10.20964/2016.12.88
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The metal nanoparticles synthesis is highly explored field of nanotechnology. The biological methods seem to be more effective. A simple and elegant method is adopted to prepare Silver nanoparticles (AgNPs) in a single step using Calendula officinalis extract (COE) as reducing and stabilizing agent. The plant extract is mixed with AgNO3 to get biosynthesized AgNPs. The biosynthesized AgNPs were both optically and electrochemically characterized by UV-Vis, Infrared spectroscopy, Transmission Electron Microscopy, Fluorescence spectroscopy, Zeta potential and Cyclic Voltammetry. The results showed Calendula officinalis extract is a useful bioreductant for the synthesis of AgNPs. This study infers that the size of biosynthesized AgNPs ranges from 30 to 50 nm. The surface plasmon resonance peak in the UV-Vis absorption spectra shows maximum absorption at 435 nm. Fluorescence spectra of silver nanoparticles, which show an emission peak at 468 nm have also been studied. Zeta potential analysis ensured the biosynthesized AgNPs are highly stable. Using this environmentally friendly method of biological AgNPs production supplies rates of biosynthesis facile in comparison with other chemical and engineered routes. The employment of traditional medicine in biosynthesis protocols can potentially open new doors in various human health and well-being implications such as cosmetics, foods and medicine.
引用
收藏
页码:10795 / 10805
页数:11
相关论文
共 54 条
  • [1] Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles
    Ahmad, Tokeer
    Wani, Irshad A.
    Manzoor, Nikhat
    Ahmed, Jahangeer
    Asiri, Abdullah M.
    [J]. COLLOIDS AND SURFACES B-BIOINTERFACES, 2013, 107 : 227 - 234
  • [2] [Anonymous], 2010, INT J GREEN NANOTECH, DOI DOI 10.1080/19430871003684572
  • [3] Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation
    Arunachalam, Rajeswari
    Dhanasingh, Sujatha
    Kalimuthu, Balasaraswathi
    Uthirappan, Mani
    Rose, Chellan
    Mandal, Asit Baran
    [J]. COLLOIDS AND SURFACES B-BIOINTERFACES, 2012, 94 : 226 - 230
  • [4] Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution
    Bae, CH
    Nam, SH
    Park, SM
    [J]. APPLIED SURFACE SCIENCE, 2002, 197 : 628 - 634
  • [5] Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus
    Balaji, D. S.
    Basavaraja, S.
    Deshpande, R.
    Mahesh, D. Bedre
    Prabhakar, B. K.
    Venkataraman, A.
    [J]. COLLOIDS AND SURFACES B-BIOINTERFACES, 2009, 68 (01) : 88 - 92
  • [6] Electrochemical sensing of NADH based on Meldola Blue immobilized silver nanoparticle-conducting polymer electrode
    Balamurugan, A.
    Ho, Kun-Cheng
    Chen, Shen-Ming
    Huang, Tzu-Yen
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2010, 362 (1-3) : 1 - 7
  • [7] Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum
    Basavaraja, S.
    Balaji, S. D.
    Lagashetty, Arunkumar
    Rajasab, A. H.
    Venkataraman, A.
    [J]. MATERIALS RESEARCH BULLETIN, 2008, 43 (05) : 1164 - 1170
  • [8] Microgel-stabilized metal nanoclusters: Size control by microgel nanomorphology
    Biffis, A
    Orlandi, N
    Corain, B
    [J]. ADVANCED MATERIALS, 2003, 15 (18) : 1551 - +
  • [9] In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility
    Brunner, Tobias J.
    Wick, Peter
    Manser, Pius
    Spohn, Philipp
    Grass, Robert N.
    Limbach, Ludwig K.
    Bruinink, Arie
    Stark, Wendelin J.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (14) : 4374 - 4381
  • [10] Cheng HW, 2011, INT J ELECTROCHEM SC, V6, P4150