Genomic evaluations using similarity between haplotypes

被引:22
|
作者
Hickey, J. M. [1 ]
Kinghorn, B. P. [1 ]
Tier, B. [2 ]
Clark, S. A. [1 ,3 ]
van der Werf, J. H. J. [1 ,3 ]
Gorjanc, G. [4 ]
机构
[1] Univ New England, Sch Environm & Rural Sci, Armidale, NSW 2351, Australia
[2] Univ New England, Anim Genet & Breeding Unit, Armidale, NSW 2351, Australia
[3] Cooperat Res Ctr Sheep Ind Innovat, Armidale, NSW, Australia
[4] Univ Ljubljana, Biotechn Fac, Dept Anim Sci, Domzale, Slovenia
基金
澳大利亚研究理事会;
关键词
Genomic selection; haplotypes; similarity; IMPUTATION METHOD; PREDICTION; SELECTION; MARKERS; HERITABILITY; ACCURACY; DESCENT; MODEL;
D O I
10.1111/jbg.12020
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Long-range phasing and haplotype library imputation methodologies are accurate and efficient methods to provide haplotype information that could be used in prediction of breeding value or phenotype. Modelling long haplotypes as independent effects in genomic prediction would be inefficient due to the many effects that need to be estimated and phasing errors, even if relatively low in frequency, exacerbate this problem. One approach to overcome this is to use similarity between haplotypes to model covariance of genomic effects by region or of animal breeding values. We developed a simple method to do this and tested impact on genomic prediction by simulation. Results show that the diagonal and off-diagonal elements of a genomic relationship matrix constructed using the haplotype similarity method had higher correlations with the true relationship between pairs of individuals than genomic relationship matrices built using unphased genotypes or assumed unrelated haplotypes. However, the prediction accuracy of such haplotype-based prediction methods was not higher than those based on unphased genotype information.
引用
收藏
页码:259 / 269
页数:11
相关论文
共 50 条
  • [21] Evidence of biases in genetic evaluations due to genomic preselection in dairy cattle
    Patry, C.
    Ducrocq, V.
    JOURNAL OF DAIRY SCIENCE, 2011, 94 (02) : 1011 - 1020
  • [22] Performance of genomic prediction using haplotypes in New Zealand dairy cattle
    Hayr, M. K.
    Druet, T.
    Garrick, D. J.
    JOURNAL OF ANIMAL SCIENCE, 2016, 94 : 13 - 13
  • [23] An approximate Bayesian significance test for genomic evaluations
    Wittenburg, Doerte
    Liebscher, Volkmar
    BIOMETRICAL JOURNAL, 2018, 60 (06) : 1096 - 1109
  • [24] Exploring the inclusion of genomic information and metafounders in Latxa dairy sheep genetic evaluations
    Granado-Tajada, I.
    Legarra, A.
    Ugarte, E.
    JOURNAL OF DAIRY SCIENCE, 2020, 103 (07) : 6346 - 6353
  • [25] Genotyping strategies for maximizing genomic information in evaluations of the Latxa dairy sheep breed
    Granado-Tajada, I
    Varona, L.
    Ugarte, E.
    JOURNAL OF DAIRY SCIENCE, 2021, 104 (06) : 6861 - 6872
  • [26] Genomic Estimated Breeding Values Using Genomic Relationship Matrices in a Cloned Population of Loblolly Pine
    Zapata-Valenzuela, Jaime
    Whetten, Ross W.
    Neale, David
    McKeand, Steve
    Isik, Fikret
    G3-GENES GENOMES GENETICS, 2013, 3 (05): : 909 - 916
  • [27] Interest of using imputation for genomic evaluation in layer chicken
    Herry, Florian
    Druet, David Picard
    Herault, Frederic
    Varenne, Amandine
    Burlot, Thierry
    Le Roy, Pascale
    Allais, Sophie
    POULTRY SCIENCE, 2020, 99 (05) : 2324 - 2336
  • [28] Genetic evaluations in cattle using the single-step genomic best linear unbiased predictor
    Amaya Martinez, Alejandro
    Martinez Sarmiento, Rodrigo
    Ceron-Munoz, Mario
    REVISTA CORPOICA-CIENCIA Y TECNOLOGIA AGROPECUARIA, 2020, 21 (01):
  • [29] Towards multi-breed genomic evaluations for female fertility of tropical beef cattle
    Hayes, Ben J.
    Corbet, Nicholas J.
    Allen, Jack M.
    Laing, Alan R.
    Fordyce, Geoffry
    Lyons, Russel
    McGowan, Michael R.
    Burns, Brian M.
    JOURNAL OF ANIMAL SCIENCE, 2019, 97 (01) : 55 - 62
  • [30] Genomic prediction within and across maize landrace derived populations using haplotypes
    Lin, Yan-Cheng
    Mayer, Manfred
    Valle Torres, Daniel
    Pook, Torsten
    Hoelker, Armin C.
    Presterl, Thomas
    Ouzunova, Milena
    Schoen, Chris-Carolin
    FRONTIERS IN PLANT SCIENCE, 2024, 15