Optimality of impulse harvesting policies

被引:7
作者
Erdlenbruch, Katrin [1 ,2 ]
Jean-Marie, Alain [3 ,4 ]
Moreaux, Michel [5 ,6 ]
Tidball, Mabel [7 ,8 ]
机构
[1] Irstea, F-34196 Montpellier 5, France
[2] UMR G EAU, F-34196 Montpellier 5, France
[3] INRIA, F-34392 Montpellier 5, France
[4] UMR LIRMM, F-34392 Montpellier 5, France
[5] Univ Toulouse 1 Capitole, Toulouse Sch Econ, IDEI, F-31000 Toulouse, France
[6] LERNA, F-31000 Toulouse, France
[7] INRA, F-34060 Montpellier 1, France
[8] UMR LAMETA, F-34060 Montpellier 1, France
关键词
Optimal control; Impulse control; Renewable resource economics; Submodularity; RENEWABLE RESOURCE; CYCLES; EXPLOITATION;
D O I
10.1007/s00199-011-0650-6
中图分类号
F [经济];
学科分类号
02 ;
摘要
We explore the link between cyclical and smooth resource exploitation. We define an impulse control framework which can generate both cyclical solutions and steady-state solutions. Our model can admit convex and concave profit functions and allows the integration of different stock-dependent profit functions. We show that the strict concavity of the profit function is only a special case of a more general condition, related to submodularity, that ensures the existence of optimal cyclical policies. We then establish a link with the discrete-time models with cyclical solutions by Benhabib and Nishimura (J Econ Theory 35:284-306, 1985) and Dawid and Kopel (J Econ Theory 76:272-297, 1997). For the steady-state solution, we explore the relation to Clark's (1976) continuous control model.
引用
收藏
页码:429 / 459
页数:31
相关论文
共 26 条
[1]   COMPETITIVE-EQUILIBRIUM CYCLES [J].
BENHABIB, J ;
NISHIMURA, K .
JOURNAL OF ECONOMIC THEORY, 1985, 35 (02) :284-306
[3]   ECONOMICS OF FISHING AND MODERN CAPITAL THEORY - SIMPLIFIED APPROACH [J].
CLARK, CW ;
MUNRO, GR .
JOURNAL OF ENVIRONMENTAL ECONOMICS AND MANAGEMENT, 1975, 2 (02) :92-106
[4]  
Clark CW., 2010, Mathematical bioeconomics: the mathematics of conservation, V3
[5]  
Davis M. H. A., 1993, MARKOV MODELS OPTIMI
[6]  
Dawid H, 1997, ECON THEORY, V9, P427
[7]   On optimal cycles in dynamic programming models with convex return function [J].
Dawid, H ;
Kopel, M .
ECONOMIC THEORY, 1999, 13 (02) :309-327
[8]   On the economically optimal exploitation of a renewable resource: The case of a convex environment and a convex return function [J].
Dawid, H ;
Kopel, M .
JOURNAL OF ECONOMIC THEORY, 1997, 76 (02) :272-297
[9]  
Faustmann Martin., 1849, Allgemeine Fotst-und Jagd-Zeitung, V25, P441
[10]   FISHERY DYNAMICS - NORTH-ATLANTIC COD FISHERY [J].
HANNESSON, R .
CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE, 1975, 8 (02) :151-173