Nanocomposite-Seeded Epitaxial Growth of Single-Domain Lithium Niobate Thin Films for Surface Acoustic Wave Devices

被引:9
作者
Paldi, Robynne L. [1 ]
Qi, Zhimin [1 ]
Misra, Shikhar [1 ]
Lu, Juanjuan [1 ]
Sun, Xing [1 ]
Phuah, Xin Li [1 ]
Kalaswad, Matias [2 ]
Bischoff, Jay [3 ]
Branch, Darren W. [3 ]
Siddiqui, Aleem [3 ]
Wang, Haiyan [1 ,2 ]
机构
[1] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[3] Sandia Natl Labs, MicroElectroMech Syst MEMS Dept, 1515 Eubank SE Bldg 957, Albuquerque, NM 87123 USA
来源
ADVANCED PHOTONICS RESEARCH | 2021年 / 2卷 / 06期
关键词
Au; LiNbO3; oxide-metal nanocomposite; seed layer; surface acoustic wave devices;
D O I
10.1002/adpr.202000149
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Epitaxial lithium niobate (LNO) thin films are an attractive material for devices across a broad range of fields, including optics, acoustics, and electronics. These applications demand high-quality thin films without in-plane growth domains to reduce the optical/acoustical losses and optimize efficiency. Twin-free single-domain-like growth has been achieved previously, but it requires specific growth conditions that might be hard to replicate. In this work, a versatile nanocomposite-seeded approach is demonstrated as an effective approach to grow single-domain epitaxial lithium niobate thin films. Films are grown through a pulsed laser deposition method and growth conditions are optimized to achieve high-quality epitaxial film. A comprehensive microstructure characterization is performed and optical properties are measured. A piezoelectric acoustic resonator device is developed to demonstrate the future potential of the nanocomposite-seeded approach for high-quality LNO growth for radio frequency (RF) applications.
引用
收藏
页数:8
相关论文
共 41 条
[1]   Epitaxial growth of LiNbO3 thin films on (001) sapphire by pulsed laser deposition [J].
Aubert, P ;
Garry, G ;
Bisaro, R ;
Olivier, J ;
Garcia-Lopez, J ;
Urlacher, C .
MICROELECTRONIC ENGINEERING, 1995, 29 (1-4) :107-110
[2]   Optical waveguides in lithium niobate: Recent developments and applications [J].
Bazzan, Marco ;
Sada, Cinzia .
APPLIED PHYSICS REVIEWS, 2015, 2 (04)
[3]  
Branch DW, 2014, IEEE T ULTRASON FERR, V61, P729, DOI [10.1109/TUFFC.2014.2965, 10.1109/TUFFC.2014.6805687]
[4]   High performance lithium niobate surface acoustic wave transducers in the 4-12 GHz super high frequency range [J].
Chen, Xiao ;
Mohammad, Mohammad Ali ;
Conway, James ;
Liu, Bo ;
Yang, Yi ;
Ren, Tian-Ling .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2015, 33 (06)
[5]   Combinatorial Chemical Beam Epitaxy of Lithium Niobate Thin Films on Sapphire [J].
Dabirian, Ali ;
Harada, Scott ;
Kuzminykh, Yury ;
Sandu, Silviu Cosmin ;
Wagner, Estelle ;
Benvenuti, Giacomo ;
Brodard, Pierre ;
Rushworth, Simon ;
Muralt, Paul ;
Hoffmann, Patrik .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (02) :D72-D76
[6]   Epitaxial growth of lithium niobate thin films by the solid source MOCVD method [J].
Feigelson, RS .
JOURNAL OF CRYSTAL GROWTH, 1996, 166 (1-4) :1-16
[7]   LINBO3 FILM WITH A NEW EPITAXIAL ORIENTATION ON R-CUT SAPPHIRE [J].
FUJIMURA, N ;
KAKINOKI, M ;
TSUBOI, H ;
ITO, T .
JOURNAL OF APPLIED PHYSICS, 1994, 75 (04) :2169-2179
[8]   Pulsed laser deposition of lithium niobate: a parametric study [J].
Ghica, D ;
Ghica, C ;
Gartner, M ;
Nelea, V ;
Martin, C ;
Cavaleru, A ;
Mihailescu, IN .
APPLIED SURFACE SCIENCE, 1999, 138 :617-621
[9]  
Hashimoto K., 2000, Surface Acoustic Wave Devices in Telecommunications, DOI 10.1007/978-3-662-04223-6
[10]   Tailorable Optical Response of Au-LiNbO3 Hybrid Metamaterial Thin Films for Optical Waveguide Applications [J].
Huang, Jijie ;
Jin, Tiening ;
Misra, Shikhar ;
Wang, Han ;
Qi, Zhimin ;
Dai, Yaomin ;
Sun, Xing ;
Li, Leigang ;
Okkema, Joseph ;
Chen, Hou-Tong ;
Lin, Pao-Tai ;
Zhang, Xinghang ;
Wang, Haiyan .
ADVANCED OPTICAL MATERIALS, 2018, 6 (19)