The impact of arbuscular mycorrhizal fungi (AMF), inorganic phosphorus (P), and irrigation regimes was studied in an okra (Abelmoschus esculentus)-pea (Pisum sativum) cropping system in an acidic Alfisol. Experimentation was carried out at Palampur, India, in a randomized bock design (RBD), replicated three times with fourteen treatments comprising AM fungi (Glomus mosseae), inorganic phosphorus (50, 75, and 100% soil-test-based recommended P dose), irrigation regimes (at 40 and 80% available water capacity), generalized recommended NPK and irrigations (GRD), and farmers' practice. Effects of AM fungi on plant height, leaf area index (LAI), and dry-matter accumulation (DMA) were nominal at early crop growth stage, i.e., 50 DAS (days after sowing). However, at 100 DAS, AMF imbedded treatments led to higher plant height (4%), LAI (3%), and DMA (6%) in okra, whereas in pea the magnitude of increase in these parameters following AMF inoculation was 6, 5, and 8%, respectively, over non-AMF counterparts. AMF + 75% soil-test-based P dose at either of these irrigation regimes gave statistically similar yields in both okra and pea as that obtained under 100% soil-test-based P dose at either of two irrigation regimes, thus indicating an economy of about 25% in soil-test-based P dose. Regarding nutrient harvest index in okra and pea, statistically similar values were registered with most nutrients under both AMF inoculated and non-AMF counterparts. In the case of okra, P harvest index was registered less by 3% with AMF inoculation; however, its magnitude increased by 3% in pea following AMF inoculation compared to non-AMF counterparts at similar levels of P and irrigation. At completion of two cycles of okra-pea system, AMF imbedded treatments did not alter available soil nutrient status significantly in comparison to non-AMF counterparts. Overall, current study suggests that practice of AMF inoculation has great potential in enhancing growth parameters for better productivity, fertilizer-P economy, and nutrient harvest efficiency in okra-pea production system in Himalayan acidic Alfisol.