The origin of viscosity as seen through atomic level stress correlation function

被引:36
|
作者
Levashov, V. A. [1 ]
Morris, J. R. [2 ,3 ]
Egami, T. [1 ,3 ,4 ]
机构
[1] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[4] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2013年 / 138卷 / 04期
关键词
TIME-CORRELATION-FUNCTIONS; GLASS-FORMING LIQUIDS; JONES MODEL FLUID; EQUILIBRIUM MOLECULAR-DYNAMICS; THERMAL SHEAR WAVES; TRANSPORT-COEFFICIENTS; SUPERCOOLED LIQUIDS; LIGHT-SCATTERING; ELLIPSOIDAL INCLUSION; NEUTRON-SCATTERING;
D O I
10.1063/1.4789306
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The atomic level origin of viscosity and of various relaxation times is of primary interest in the field of supercooled liquids and the glass transition. Previously, by starting from the Green-Kubo expression for viscosity and by decomposing it into correlation functions between local atomic level stresses, we showed that there is a connection between shear stress waves and viscosity, and that the range of propagation of shear waves is also the range that is relevant for viscosity. Here, the behavior of the atomic level stress correlation function at different temperatures is discussed in more detail. The comparison of different time scales of the system shows that the long time decay of the stress correlation function (tau(S)) is approximately three times shorter than the long time decay of the intermediate self-scattering function (tau(alpha)), while the the Maxwell relaxation time (tau(M)) is approximately five times shorter than tau(alpha). It is demonstrated how different timescales of the stress correlation function contribute to the Maxwell relaxation time. Finally, we discuss the non-trivial role of periodic boundary conditions. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789306]
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Into the origin of electrical conductivity for the metal-semiconductor junction at the atomic level
    Janas, A.
    Piskorz, W.
    Kryshtal, A.
    Cempura, G.
    Belza, W.
    Kruk, A.
    Jany, B. R.
    Krok, F.
    APPLIED SURFACE SCIENCE, 2021, 570 (570)
  • [32] A correlation approach for the calculation of thermal conductivity of nanofluids as a function of dynamic viscosity
    Carpinlioglu, Melda Ozdinc
    Kaplan, Mahmut
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2021, 43 (05)
  • [33] CORRELATION FUNCTION APPROACH TO BULK VISCOSITY AND SOUND PROPAGATION IN CRITICAL MIXTURES
    KAWASAKI, K
    TANAKA, M
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1967, 90 (569P): : 791 - &
  • [34] SHEAR VISCOSITY CORRELATION-FUNCTION OF LIQUID ARGON AND LIQUID RUBIDIUM
    CHIAKWELU, O
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1978, 11 (07): : 1253 - 1257
  • [35] A correlation approach for the calculation of thermal conductivity of nanofluids as a function of dynamic viscosity
    Melda Ozdinc Carpinlioglu
    Mahmut Kaplan
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43
  • [36] Coherent control through atomic interference at a virtual level
    Karapanagioti, NE
    Xenakis, D
    Charalambidis, D
    Fotakis, C
    MULTIPHOTON PROCESSES 1996, 1997, 154 : 248 - 253
  • [37] CORRELATION FUNCTION FORMULA FOR INTRINSIC-VISCOSITY OF POLYMER-SOLUTIONS
    DOI, M
    OKANO, K
    POLYMER JOURNAL, 1973, 5 (02) : 216 - 226
  • [38] WATER-TREEING SEEN AS AN ENVIRONMENTAL-STRESS CRACKING PHENOMENON OF ELECTRIC ORIGIN
    MEYER, CT
    FILIPPINI, JC
    POLYMER, 1979, 20 (10) : 1186 - 1187
  • [39] CORRELATION OF DIFFUSION DATA IN FCC METALS AS A FUNCTION OF ATOMIC VOLUME
    MOORE, RH
    TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME, 1965, 233 (06): : 1064 - &
  • [40] Study on molecular level composition correlation of viscosity of residual oil and its components
    Liu S.
    Zhang L.
    Xu Z.
    Zhao S.
    Huagong Xuebao/CIESC Journal, 2023, 74 (08): : 3226 - 3241