modified impregnation;
ligand-free synthesis;
anion-excess;
gold-palladium;
direct synthesis of hydrogen peroxide;
AU-PD CATALYSTS;
BENZYL ALCOHOL OXIDATION;
TEMPERATURE CO OXIDATION;
HYDROGEN-PEROXIDE;
CARBON-MONOXIDE;
SELECTIVE OXIDATION;
AU/TIO2;
CATALYSTS;
H-2;
CHLORIDE;
SUPPORT;
D O I:
10.1021/nn302299e
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
We report a convenient excess anion modification and post-reduction step to the impregnation method which permits the reproducible preparation of supported bimetallic AuPd nanopartides having a tight particle size distribution comparable to that found for sol-immobilization materials but without the complication of ligands adsorbed on the particle surface. The advantageous features of the modified impregnation materials compared to those made by conventional impregnation include a smaller average particle size, an optimized random alloy composition, and improved compositional uniformity from particle-to-particle resulting in higher activity and stability compared to the catalysts prepared using both conventional impregnation and sol immobilization methods. Detailed STEM combined with EDX analyses of individual particles have revealed that an increase in anion concentration increases the gold content of individual particles in the resultant catalyst, thus providing a method to control/tune the composition of the nanoalloy particles. The improved activity and stability characteristics of these new catalysts are demonstrated using (i) the direct synthesis of hydrogen peroxide and (ii) the solvent-free aerobic oxidation of benzyl alcohol as case studies.