Uniform in Bandwidth Estimation of Integral Functionals of the Density Function

被引:26
作者
Gine, Evarist [1 ]
Mason, David M. [2 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Univ Delaware, Stat Program, Newark, DE 19716 USA
关键词
kernel density estimator; uniform in bandwidth; U-statistics;
D O I
10.1111/j.1467-9469.2008.00600.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We apply recent results on local U-statistics to obtain uniform in bandwidth consistency and central limit theorems for some commonly used estimators of integral functionals of density functions.
引用
收藏
页码:739 / 761
页数:23
相关论文
共 23 条
[1]  
Bickel PJ, 2003, ANN STAT, V31, P1033
[2]  
BICKEL PJ, 1988, SANKHYA SER A, V50, P381
[3]   ESTIMATION OF INTEGRAL FUNCTIONALS OF A DENSITY [J].
BIRGE, L ;
MASSART, P .
ANNALS OF STATISTICS, 1995, 23 (01) :11-29
[4]  
CHENG KF, 1981, SCAND ACTUAR J, V8, P83
[5]  
de la Pena V.H., 1999, Decoupling, From dependence to independence, Randomly stopped processes. U-statistics and processes. Martingales and beyond, Probability and its Applications (New York)
[6]  
DMITRIEV YG, 1974, NONPARAMETRIC ESTIMA
[7]  
Du J., 2007, INT J STAT MANAGEMEN, V2, P67
[8]   Best asymptotic normality of the kernel density entropy estimator for smooth densities [J].
Eggermont, PPB ;
LaRiccia, VN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1321-1326
[9]   A simple adaptive estimator of the integrated square of a density [J].
Ginc, Evarist ;
Nickl, Richard .
BERNOULLI, 2008, 14 (01) :47-61
[10]  
GINE E, 2008, PROBAB THEO IN PRESS