CO2 Conversion in Nonuniform Discharges: Disentangling Dissociation and Recombination Mechanisms

被引:44
作者
Wolf, A. J. [1 ]
Peeters, F. J. J. [1 ]
Groen, P. W. C. [1 ]
Bongers, W. A. [1 ]
van de Sanden, M. C. M. [1 ,2 ]
机构
[1] DIFFER, NL-5612 AJ Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Dept Appl Phys, Plasma Mat Proc Grp, NL-5600 MB Eindhoven, Netherlands
关键词
GLIDING ARC PLASMA; CARBON-DIOXIDE; MICROWAVE PLASMA; DECOMPOSITION;
D O I
10.1021/acs.jpcc.0c03637
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Motivated by environmental applications such as synthetic fuel synthesis, plasma-driven conversion shows promise for efficient and scalable gas conversion of CO2 to CO. Both discharge contraction and turbulent transport have a significant impact on the plasma processing conditions, but are, nevertheless, poorly understood. This work combines experiments and modeling to investigate how these aspects influence the CO production and destruction mechanisms in the vortex-stabilized CO2 microwave plasma reactor. For this, a two-dimensional axisymmetric tubular chemical kinetics model of the reactor is developed, with careful consideration of the nonuniform nature of the plasma and the vortex-induced radial turbulent transport. Energy efficiency and conversion of the dissociation process show a good agreement with the numerical results over a broad pressure range from 80 to 600 mbar. The occurrence of an energy efficiency peak between 100 and 200 mbar is associated with a discharge mode transition. The net CO production rate is inhibited at low pressure by the plasma temperature, whereas recombination of CO to CO2 dominates at high pressure. Turbulence-induced cooling and dilution of plasma products limit the extent of the latter. The maxima in energy efficiency observed experimentally around 40% are related to limits imposed by production and recombination processes. Based on these insights, feasible approaches for optimization of the plasma dissociation process are discussed.
引用
收藏
页码:16806 / 16819
页数:14
相关论文
共 44 条
[1]   Carbon Dioxide Splitting in a Dielectric Barrier Discharge Plasma: A Combined Experimental and Computational Study [J].
Aerts, Robby ;
Somers, Wesley ;
Bogaerts, Annemie .
CHEMSUSCHEM, 2015, 8 (04) :702-716
[2]  
[Anonymous], 2017, J APPL PHYS
[3]   Carbon dioxide dissociation in a microwave plasma reactor operating in a wide pressure range and different gas inlet configurations [J].
Belov, Igor ;
Vermeiren, Vincent ;
Paulussen, Sabine ;
Bogaerts, Annemie .
JOURNAL OF CO2 UTILIZATION, 2018, 24 :386-397
[4]   Pinpointing energy losses in CO2 plasmas - Effect on CO2 conversion [J].
Berthelot, Antonin ;
Bogaerts, Annemie .
JOURNAL OF CO2 UTILIZATION, 2018, 24 :479-499
[5]   Modeling of CO2 Splitting in a Microwave Plasma: How to Improve the Conversion and Energy Efficiency [J].
Berthelot, Antonin ;
Bogaerts, Annemie .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (15) :8236-8251
[6]   Chemical kinetic modelling of non-equilibrium Ar-CO2 thermal plasmas [J].
Beuthe, TG ;
Chang, JS .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1997, 36 (7B) :4997-5002
[7]   CO2 conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design [J].
Bogaerts, A. ;
Berthelot, A. ;
Heijkers, S. ;
Kolev, St ;
Snoeckx, R. ;
Sun, S. ;
Trenchev, G. ;
Van Laer, K. ;
Wang, W. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2017, 26 (06)
[8]   Plasma Technology: An Emerging Technology for Energy Storage [J].
Bogaerts, Annemie ;
Neyts, Erik C. .
ACS ENERGY LETTERS, 2018, 3 (04) :1013-1027
[9]   Plasma-driven dissociation of CO2 for fuel synthesis [J].
Bongers, Waldo ;
Bouwmeester, Henny ;
Wolf, Bram ;
Peeters, Floran ;
Welzel, Stefan ;
van den Bekerom, Dirk ;
den Harder, Niek ;
Goede, Adelbert ;
Graswinckel, Martijn ;
Groen, Pieter Willem ;
Kopecki, Jochen ;
Leins, Martina ;
van Rooij, Gerard ;
Schulz, Andreas ;
Walker, Matthias ;
van de Sanden, Richard .
PLASMA PROCESSES AND POLYMERS, 2017, 14 (06)
[10]   White paper on the future of plasma science in environment, for gas conversion and agriculture [J].
Brandenburg, Ronny ;
Bogaerts, Annemie ;
Bongers, Waldo ;
Fridman, Alexander ;
Fridman, Gregory ;
Locke, Bruce R. ;
Miller, Vandana ;
Reuter, Stephan ;
Schiorlin, Milko ;
Verreycken, Tiny ;
Ostrikov, Kostya .
PLASMA PROCESSES AND POLYMERS, 2019, 16 (01)