BERGMAN KERNELS AND THE PSEUDOEFFECTIVITY OF RELATIVE CANONICAL BUNDLES

被引:129
作者
Berndtsson, Bo [1 ]
Paun, Mihai [2 ]
机构
[1] Chalmers Univ Technol, Dept Math, S-41296 Gothenburg, Sweden
[2] Univ Henri Poincare, Inst Elie Cartan, F-54003 Nancy, France
关键词
D O I
10.1215/00127094-2008-054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main result of this article is a (practically optimal) criterion for the pseudoeffectivity of the twisted relative canonical bundles of surjective projective maps. Our theorem has several applications in algebraic geometry; to start with, we obtain the natural analytic generalization of some semipositivity results due to E. Viehweg [40], [41] and F. Campana [6]. As a byproduct, we give a simple and direct proof of a recent result due to C. Hacon and J. McKernan [16] and S. Takayama [29], [30] concerning the extension of twisted pluricanonical forms. More applications will be offered in [4], the sequel to this article.
引用
收藏
页码:341 / 378
页数:38
相关论文
共 41 条
[1]  
BERNDTSSON B, ANN I FOURI IN PRESS
[2]  
Berndtsson B., ARXIV08043884V2MATHA
[3]  
BERNDTSSON B, ARXIVMATH0608385V2MA
[4]  
BERNDTSSON B, ANN MATH IN PRESS
[5]   On the volume of a line bundle [J].
Boucksom, S .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2002, 13 (10) :1043-1063
[6]  
Campana F, 2004, ANN I FOURIER, V54, P499, DOI 10.5802/aif.2027
[7]  
CLAUDON B, ANN I FOURI IN PRESS
[8]  
de Cataldo MAA, 1998, J REINE ANGEW MATH, V502, P93
[9]  
Debarre O, 2008, ASTERISQUE, P119
[10]  
Demailly J.-P., 1999, Math. Sci. Res. Inst. Publ., V37, P233