A Fractionally Ionic Approach to Polarizability and van der Waals Many-Body Dispersion Calculations

被引:93
作者
Gould, Tim [1 ]
Lebegue, Sebastien [2 ,3 ]
Angyan, Janos G. [2 ,3 ,4 ]
Bucko, Tomag [5 ,6 ]
机构
[1] Griffith Univ, Qld Micro & Nanotechnol Ctr, Nathan, Qld 4111, Australia
[2] Univ Lorraine, F-54506 Vandoeuvre Les Nancy, France
[3] CNRS, CRM2, UMR 7036, F-54506 Vandoeuvre Les Nancy, France
[4] Pannon Univ, Dept Gen & Inorgan Chem, H-8201 Veszprem, Hungary
[5] Comenius Univ, Fac Nat Sci, Dept Phys & Theoret Chem, Ilkovicova 6, SK-84215 Bratislava, Slovakia
[6] Slovak Acad Sci, Inst Inorgan Chem, Dubravska Cesta 9, SK-84236 Bratislava, Slovakia
关键词
DENSITY-FUNCTIONAL THEORY; ENERGY; CRYSTAL; TRANSITION; SYSTEMS; NUMBER;
D O I
10.1021/acs.jctc.6b00925
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By explicitly including fractionally ionic contributions to the polarizability of a many-component system, we are able to significantly improve on previous atom-wise many-body van der Waals approaches with essentially no extra numerical cost. For nonionic systems, our method is comparable in accuracy to existing approaches. However, it offers substantial improvements in ionic solids, e.g., producing better polarizabilities by over 65% in some cases. It has particular benefits for two-dimensional transition metal dichalcogenides and interactions of H-2 with modified coronenes, ionic systems of nanotechnological interest. It thus offers an efficient improvement on existing approaches, valid for a wide range of systems.
引用
收藏
页码:5920 / 5930
页数:11
相关论文
共 50 条
  • [31] Quantum Monte Carlo calculations of van der Waals interactions between aromatic benzene rings
    Azadi, Sam
    Kuehne, T. D.
    PHYSICAL REVIEW B, 2018, 97 (20)
  • [32] Many-body dispersion effects in the binding of adsorbates on metal surfaces
    Maurer, Reinhard J.
    Ruiz, Victor G.
    Tkatchenko, Alexandre
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (10)
  • [33] Many-body theory calculations of positron binding to hydrogen cyanide
    Hofierka, Jaroslav
    Cunningham, Brian
    Green, Dermot G.
    EUROPEAN PHYSICAL JOURNAL D, 2024, 78 (04)
  • [34] A shortcut to the thermodynamic limit for quantum many-body calculations of metals
    Mihm, Tina N.
    Schafer, Tobias
    Ramadugu, Sai Kumar
    Weiler, Laura
    Gruneis, Andreas
    Shepherd, James J.
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (12): : 801 - 808
  • [35] van der Waals dispersion interactions in molecular materials: beyond pairwise additivity
    Reilly, Anthony M.
    Tkatchenko, Alexandre
    CHEMICAL SCIENCE, 2015, 6 (06) : 3289 - 3301
  • [36] Wannier functions approach to van der Waals interactions in ABINIT
    Espejo, C.
    Rangel, T.
    Pouillon, Y.
    Romero, A. H.
    Gonze, X.
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (03) : 480 - 485
  • [37] Benchmarking several van der Waals dispersion approaches for the description of intermolecular interactions
    Claudot, Julien
    Kim, Won June
    Dixit, Anant
    Kim, Hyungjun
    Gould, Tim
    Rocca, Dario
    Lebegue, Sebastien
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (06)
  • [38] Many-body dispersion interactions from the exchange-hole dipole moment model
    Otero-de-la-Roza, A.
    Johnson, Erin R.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (05)
  • [39] Accurate and Efficient ab Initio Calculations for Supramolecular Complexes: Symmetry-Adapted Perturbation Theory with Many-Body Dispersion
    Carter-Fenk, Kevin
    Lao, Ka Un
    Liu, Kuan-Yu
    Herbert, John M.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (11): : 2706 - 2714
  • [40] Reduced-basis approach to many-body localization
    Prelovsek, P.
    Barisic, O. S.
    Mierzejewski, M.
    PHYSICAL REVIEW B, 2018, 97 (03)