Unconditional Uniqueness for the Cubic Gross-Pitaevskii Hierarchy via Quantum de Finetti

被引:45
作者
Chen, Thomas [1 ]
Hainzl, Christian [2 ]
Pavlovic, Natasa [1 ]
Seiringer, Robert [3 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Tubingen, Fachbereich Math, D-72076 Tubingen, Germany
[3] IST Austria, A-3400 Klosterneuburg, Austria
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
NONLINEAR SCHRODINGER-EQUATION; BOSE-EINSTEIN CONDENSATION; MEAN-FIELD-LIMIT; GLOBAL WELL-POSEDNESS; RIGOROUS DERIVATION; CLASSICAL-LIMIT; DYNAMICS; BOSONS;
D O I
10.1002/cpa.21552
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new, simpler proof of the unconditional uniqueness of solutions to the cubic Gross-Pitaevskii hierarchy in 3. One of the main tools in our analysis is the quantum de Finetti theorem. Our uniqueness result is equivalent to the one established in the celebrated works of Erds, Schlein, and Yau. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1845 / 1884
页数:40
相关论文
共 48 条
[31]   LOCALLY NORMAL SYMMETRIC STATES AND AN ANALOG OF DE FINETTIS THEOREM [J].
HUDSON, RL ;
MOODY, GR .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 33 (04) :343-351
[32]  
Kirkpatrick K, 2011, AM J MATH, V133, P91
[33]   On the uniqueness of solutions to the gross-pitaevskii hierarchy [J].
Klainerman, Sergiu ;
Machedon, Matei .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (01) :169-185
[34]  
Lanford III O. E., 1969, Communications in Mathematical Physics, V11, P257, DOI 10.1007/BF01645848
[35]  
Lanford O. E. III, 1968, Communications in Mathematical Physics, V9, P176, DOI 10.1007/BF01645685
[36]   Derivation of Hartree's theory for generic mean-field Bose systems [J].
Lewin, Mathieu ;
Phan Thanh Nam ;
Rougerie, Nicolas .
ADVANCES IN MATHEMATICS, 2014, 254 :570-621
[37]  
Lieb E. H., 2004, Condensed Matter Physics and Exactly Soluble Models: Selecta of Elliott H. Lieb, P337
[38]   Proof of Bose-Einstein condensation for dilute trapped gases [J].
Lieb, EH ;
Seiringer, R .
PHYSICAL REVIEW LETTERS, 2002, 88 (17) :4-170409
[39]   A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional bose gas [J].
Lieb, EH ;
Seiringer, R ;
Yngvason, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 224 (01) :17-31
[40]   Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional [J].
Lieb, EH ;
Seiringer, R ;
Yngvason, J .
PHYSICAL REVIEW A, 2000, 61 (04) :13-436021