Unconditional Uniqueness for the Cubic Gross-Pitaevskii Hierarchy via Quantum de Finetti

被引:45
作者
Chen, Thomas [1 ]
Hainzl, Christian [2 ]
Pavlovic, Natasa [1 ]
Seiringer, Robert [3 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Tubingen, Fachbereich Math, D-72076 Tubingen, Germany
[3] IST Austria, A-3400 Klosterneuburg, Austria
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
NONLINEAR SCHRODINGER-EQUATION; BOSE-EINSTEIN CONDENSATION; MEAN-FIELD-LIMIT; GLOBAL WELL-POSEDNESS; RIGOROUS DERIVATION; CLASSICAL-LIMIT; DYNAMICS; BOSONS;
D O I
10.1002/cpa.21552
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new, simpler proof of the unconditional uniqueness of solutions to the cubic Gross-Pitaevskii hierarchy in 3. One of the main tools in our analysis is the quantum de Finetti theorem. Our uniqueness result is equivalent to the one established in the celebrated works of Erds, Schlein, and Yau. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1845 / 1884
页数:40
相关论文
共 48 条
[1]   Rigorous derivation of the cubic NLS in dimension one [J].
Adami, Riccardo ;
Golse, Francois ;
Teta, Alessandro .
JOURNAL OF STATISTICAL PHYSICS, 2007, 127 (06) :1193-1220
[2]   Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states [J].
Ammari, Z. ;
Nier, F. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 95 (06) :585-626
[3]   Mean Field Limit for Bosons and Infinite Dimensional Phase-Space Analysis [J].
Ammari, Zied ;
Nier, Francis .
ANNALES HENRI POINCARE, 2008, 9 (08) :1503-1574
[4]   Rate of Convergence Towards the Hartree-von Neumann Limit in the Mean-Field Regime [J].
Anapolitanos, Ioannis .
LETTERS IN MATHEMATICAL PHYSICS, 2011, 98 (01) :1-31
[5]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[6]  
[Anonymous], ARXIV13057240MATHPH
[7]  
[Anonymous], ARXIV13035385MATHAP
[8]  
[Anonymous], 1975, Lecture Notes in Phys.
[9]  
[Anonymous], OBERWOLFACH SEMINARS
[10]  
Cazenave T, 2003, Semilinear Schrodinger Equations