Partial maximum likelihood estimation of spatial probit models

被引:39
|
作者
Wang, Honglin [2 ]
Iglesias, Emma M. [1 ]
Wooldridge, Jeffrey M. [3 ]
机构
[1] Univ A Coruna, Fac Econ & Empresa, Dept Appl Econ 2, La Coruna 15071, Spain
[2] Two Int Finance Ctr, Hong Kong Inst Monetary Res, Central, Hong Kong, Peoples R China
[3] Michigan State Univ, Dept Econ, E Lansing, MI 48824 USA
关键词
Spatial statistics; Maximum likelihood; Probit model; AUTOREGRESSIVE MODELS; AUTOCORRELATION;
D O I
10.1016/j.jeconom.2012.08.005
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper analyzes spatial Probit models for cross sectional dependent data in a binary choice context. Observations are divided by pairwise groups and bivariate normal distributions are specified within each group. Partial maximum likelihood estimators are introduced and they are shown to be consistent and asymptotically normal under some regularity conditions. Consistent covariance matrix estimators are also provided. Estimates of average partial effects can also be obtained once we characterize the conditional distribution of the latent error. Finally, a simulation study shows the advantages of our new estimation procedure in this setting. Our proposed partial maximum likelihood estimators are shown to be more efficient than the generalized method of moments counterparts. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 50 条
  • [31] A note on maximum likelihood estimation
    Hengartner, NW
    AMERICAN STATISTICIAN, 1999, 53 (02) : 123 - 125
  • [32] Maximum entropy and maximum likelihood in spectral estimation
    Landau, HJ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (03) : 1332 - 1336
  • [33] Maximum Likelihood Estimation in Markov Regime-Switching Models With Covariate-Dependent Transition Probabilities
    Pouzo, Demian
    Psaradakis, Zacharias
    Sola, Martin
    ECONOMETRICA, 2022, 90 (04) : 1681 - 1710
  • [34] Newton-based maximum likelihood estimation in nonlinear state space models
    Kok, Manon
    Dahlin, Johan
    Schon, Thomas B.
    Wills, Adrian
    IFAC PAPERSONLINE, 2015, 48 (28): : 398 - 403
  • [35] Maximum Likelihood Estimation of Gaussian Mixture Models using PSO for Image Segmentation
    Khoa Anh Tran
    Nhat Quang Vo
    Lee, Gueesang
    2013 IEEE 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2013), 2013, : 501 - 507
  • [36] Constrained maximum likelihood estimation for state space sampled-data models
    Avila, F.
    Yuz, J. I.
    Donaire, A.
    Aguero, J. C.
    2018 22ND INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2018, : 621 - 626
  • [37] CodonPhyML: Fast Maximum Likelihood Phylogeny Estimation under Codon Substitution Models
    Gil, Manuel
    Zanetti, Marcelo Serrano
    Zoller, Stefan
    Anisimova, Maria
    MOLECULAR BIOLOGY AND EVOLUTION, 2013, 30 (06) : 1270 - 1280
  • [38] A Comparison Between Maximum Likelihood and Bayesian Estimation of Stochastic Frontier Production Models
    Ortega, Francisco J.
    Gavilan, Jose M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2014, 43 (07) : 1714 - 1725
  • [39] CONSISTENT MAXIMUM LIKELIHOOD ESTIMATION USING SUBSETS WITH APPLICATIONS TO MULTIVARIATE MIXED MODELS
    Ekvall, Karl Oskar
    Jones, Galin L.
    ANNALS OF STATISTICS, 2020, 48 (02) : 932 - 952
  • [40] COMPARISON OF MODELS FOR NUCLEOTIDE SUBSTITUTION USED IN MAXIMUM-LIKELIHOOD PHYLOGENETIC ESTIMATION
    YANG, ZH
    GOLDMAN, N
    FRIDAY, A
    MOLECULAR BIOLOGY AND EVOLUTION, 1994, 11 (02) : 316 - 324